

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

0620/23 **CHEMISTRY**

May/June 2017 Paper 2 Multiple Choice (Extended)

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO **NOT** WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 15 printed pages and 1 blank page.


© UCLES 2017

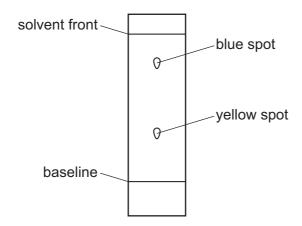
International Examinations

1 Small crystals of purple KMnO₄ (M_r = 158) and orange K₂Cr₂O₇ (M_r = 294) were placed at the centres of separate petri dishes filled with agar jelly. They were left to stand under the same physical conditions.

After some time, the colour of each substance had spread out as shown.

The lengths of the arrows indicate the relative distances travelled by particles of each substance.

Which statement is correct?

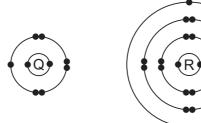

- **A** Diffusion is faster in dish 1 because the mass of the particles is greater.
- **B** Diffusion is faster in dish 2 because the mass of the particles is greater.
- **C** Diffusion is slower in dish 1 because the mass of the particles is smaller.
- **D** Diffusion is slower in dish 2 because the mass of the particles is greater.
- **2** A compound, X, has a melting point of 71 °C and a boiling point of 375 °C.

Which statement about X is correct?

- **A** It is a liquid at 52 °C and a gas at 175 °C.
- **B** It is a liquid at 69 °C and a gas at 380 °C.
- **C** It is a liquid at 75 °C and a gas at 350 °C.
- **D** It is a liquid at 80 °C and a gas at 400 °C.

3 A student used chromatography to analyse a green food colouring.

The chromatogram obtained is shown.

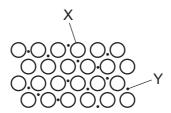


The table lists some yellow food dyes and their $R_{\rm f}$ values.

Which yellow food dye does the green food colouring contain?

	yellow food dye	R _f value	
A Quinolene Yellow		0.48	
В	Sunset Yellow	0.32	
С	tartrazine	0.69	
D	Yellow 2G	0.82	

4 The electronic structures of atoms Q and R are shown.



Q and R form an ionic compound.

What is the formula of the compound?

- A QR₇
- \mathbf{B} Q_2R_4
- **C** QR
- \mathbf{D} Q_7R

- 5 Which substance is a macromolecule?
 - A ammonia
 - B carbon dioxide
 - C diamond
 - **D** water
- **6** The diagram shows metallic bonding.

Which labels are correct?

	X	Y	
Α	atomic nucleus	outer electron	
В	metal atom	mobile electron	
С	metal ion	mobile electron	
D	positive ion	negative ion	

7 Aqueous iron(III) sulfate and aqueous sodium hydroxide react to give a precipitate of iron(III) hydroxide and a solution of sodium sulfate.

What is the balanced equation for this reaction?

A
$$Fe_2(SO_4)_3(aq) + 2NaOH(aq) \rightarrow Fe(OH)_3(s) + Na_2SO_4(aq)$$

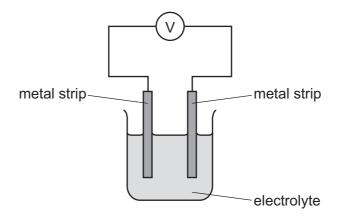
B
$$Fe_2(SO_4)_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3Na_2SO_4(aq)$$

$$\mathbf{C}$$
 Fe₂(SO₄)₃(aq) + 6NaOH(aq) \rightarrow 2Fe(OH)₃(s) + 3Na₂SO₄(aq)

D
$$2Fe_2(SO_4)_3(aq) + 6NaOH(aq) \rightarrow 4Fe(OH)_3(s) + 6Na_2SO_4(aq)$$

8 The equation for the reaction between sodium carbonate and dilute hydrochloric acid is shown.

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$


What is the maximum volume of carbon dioxide produced when 26.5 g of sodium carbonate react with dilute hydrochloric acid?

- \mathbf{A} 6 dm³
- **B** 12 dm³
- **C** 18 dm³
- \mathbf{D} 24 dm³

- **9** Which statement about electrolysis is correct?
 - A Electrons move through the electrolyte from the cathode to the anode.
 - **B** Electrons move towards the cathode in the external circuit.
 - **C** Negative ions move towards the anode in the external circuit.
 - **D** Positive ions move through the electrolyte towards the anode during electrolysis.
- **10** The reactivity series for a number of different metals is shown.

most reactive			-	least re	eactive
magnesium	zinc	iron	copper	silver	platinum

The diagram shows different metal strips dipped into an electrolyte.

Which pair of metals produces the highest voltage?

- A copper and magnesium
- B magnesium and platinum
- C magnesium and zinc
- **D** silver and platinum
- **11** Heat energy is produced when hydrocarbons burn in air.

Which equations represent this statement?

1
$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

$$2 C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

$$3 \quad CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

12 Which statements about exothermic and endothermic reactions are correct?

- 1 During an exothermic reaction, heat is given out.
- 2 The temperature of an endothermic reaction goes up because heat is taken in.
- 3 Burning methane in the air is an exothermic reaction.

A 1, 2 and 3

B 1 and 2 only

C 1 and 3 only

D 2 and 3 only

13 Hydrogen and chlorine react to form hydrogen chloride.

The reaction is exothermic.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

The overall energy change for this reaction is –184 kJ/mol.

The table gives some of the bond energies involved.

bond	bond energy in kJ/mol	
H–C1	+430	
H–H	+436	

What is the energy of the C1–C1 bond?

A -240 kJ/mol

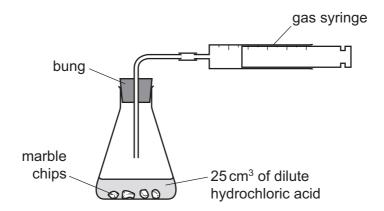
B -190 kJ/mol

C +190 kJ/mol

D +240 kJ/mol

14 Which changes are physical changes?

- 1 melting ice to form water
- 2 burning hydrogen to form water
- 3 adding sodium to water
- 4 boiling water to form steam


A 1 and 2

B 1 and 4

C 2 and 3

D 3 and 4

15 A student was investigating the reaction between marble chips and dilute hydrochloric acid.

Which changes slow down the rate of reaction?

	temperature of acid	concentration of acid	surface area of marble chips
Α	decrease	decrease	decrease
В	decrease	decrease	increase
С	increase	decrease	decrease
D	increase	increase	increase

16 Hydrogen is produced when methane reacts with steam.

The equation for the reaction is shown.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

The forward reaction is endothermic.

Which conditions produce the highest yield of hydrogen?

pressure		temperature	
Α	high	high	
В	high	low	
С	low	high	
D	low	low	

17 An example of a redox reaction is shown.

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

Which statement about the reaction is correct?

- A Zn is the oxidising agent and it oxidises Cu²⁺.
- **B** Zn is the oxidising agent and it reduces Cu²⁺.
- **C** In is the reducing agent and it oxidises Cu²⁺.
- **D** Zn is the reducing agent and it reduces Cu²⁺.
- **18** Which oxide is amphoteric?
 - $\mathbf{A} \quad \mathsf{A} l_2 \mathsf{O}_3$
- **B** CaO
- C Na₂O
- **D** SO₂

19 Chloric(I) acid, HClO, is formed when chlorine dissolves in water. It is a weak acid.

What is meant by the term weak acid?

- **A** It contains fewer hydrogen atoms than a strong acid.
- **B** It is easily neutralised by a strong alkali.
- **C** It is less concentrated than a strong acid.
- **D** It is only partially ionised in solution.
- **20** Silver nitrate reacts with sodium chloride to produce silver chloride and sodium nitrate. The equation for the reaction is shown.

$$AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

How is silver chloride separated from the reaction mixture?

- **A** crystallisation
- **B** distillation
- C evaporation
- **D** filtration

21 Aqueous sodium hydroxide reacts with an aqueous solution of compound Y to give a green precipitate.

Aqueous ammonia also reacts with an aqueous solution of compound Y to give a green precipitate.

In each case the precipitate is insoluble when an excess of reagent is added.

Which	ion is r	resent in	Υ?

- A chromium(III)
- **B** copper(II)
- **C** iron(II)
- **D** iron(III)
- 22 Which element is less reactive than the other members of its group in the Periodic Table?
 - A astatine
 - **B** caesium
 - **C** fluorine
 - **D** rubidium
- 23 Ununseptium (atomic number 117) is a man-made element that is below a tatine in Group VII of the Periodic Table.

What is the expected state of ununseptium at room temperature?

- A a diatomic gas
- **B** a liquid
- C a monatomic gas
- **D** a solid
- 24 Why are weather balloons sometimes filled with helium rather than hydrogen?
 - A Helium is found in air.
 - **B** Helium is less dense than hydrogen.
 - **C** Helium is more dense than hydrogen.
 - D Helium is unreactive.

25 Which equation from the zinc extraction process shows the metal being produced by reduction?

A
$$ZnO + C \rightarrow Zn + CO$$

$$\textbf{B} \quad 2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

$$\mathbf{C}$$
 Zn(g) \rightarrow Zn(l)

D
$$Zn(I) \rightarrow Zn(s)$$

26 Element E:

- forms an alloy
- has a basic oxide
- is below hydrogen in the reactivity series.

What is E?

- A carbon
- **B** copper
- **C** sulfur
- **D** zinc
- 27 The section of the reactivity series shown includes a newly discovered element, symbol X.

The only oxide of X has the formula XO.

Ca

Mg

Fe

Χ

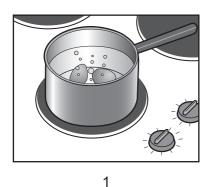
Η

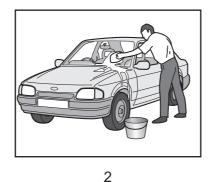
Cu

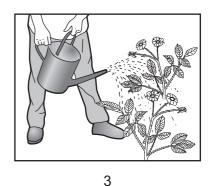
Which equation shows a reaction which occurs?

A
$$Cu(s) + X^{2+}(aq) \rightarrow Cu^{2+}(aq) + X(s)$$

B
$$2X(s) + Cu^{2+}(aq) \rightarrow 2X^{+}(aq) + Cu(s)$$


C
$$X(s) + Fe2O3(s) \rightarrow 2Fe(s) + 3XO(s)$$


D
$$X(s) + 2HCl(aq) \rightarrow XCl_2(aq) + H_2(g)$$


28 Stainless steel is an alloy of iron and other metals. It is strong and does not rust but it costs much more than normal steel.

What is **not** made from stainless steel?

- **A** cutlery
- B pipes in a chemical factory
- **C** railway lines
- **D** saucepans
- **29** The diagram shows some uses of water in the home.

For which uses is it important for the water to have been treated?

- A 1 only
- **B** 2 only
- C 3 only
- **D** 1, 2 and 3
- **30** The carbon cycle describes how carbon dioxide gas is added to or removed from the atmosphere.

Which row describes the movement of carbon dioxide during each process?

	photosynthesis	combustion	respiration
A	added to the atmosphere	added to the atmosphere	removed from the atmosphere
В	added to the atmosphere	removed from the atmosphere	added to the atmosphere
С	removed from the atmosphere	added to the atmosphere	added to the atmosphere
D	removed from the atmosphere	added to the atmosphere	removed from the atmosphere

31 Which row gives the catalyst for the Haber process and the sources of the raw materials?

	catalyst	source of hydrogen	source of nitrogen
A	iron	electrolysis	fertiliser
В	iron	methane	air
С	vanadium pentoxide	methane	air
D	vanadium pentoxide	methane	fertiliser

32 Petrol burns in a car engine to produce waste gases which leave through the car exhaust.

One of these waste gases is an oxide of nitrogen.

Which statement describes how this oxide of nitrogen is formed?

- A Carbon dioxide reacts with nitrogen in the catalytic converter.
- **B** Nitrogen reacts with oxygen in the car engine.
- **C** Nitrogen reacts with oxygen in the catalytic converter.
- **D** Petrol combines with nitrogen in the car engine.
- **33** Which statement about sulfuric acid is correct?
 - **A** It is made by the Haber process.
 - **B** It is made in the atmosphere by the action of lightning.
 - C It reacts with ammonia to produce a fertiliser.
 - **D** It reacts with copper metal to produce hydrogen gas.
- **34** Two equations are shown.

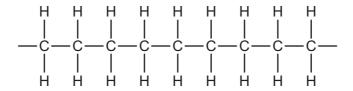
reaction 1
$$CaCO_3 \rightarrow CaO + CO_2$$

reaction 2 $CaO + H_2O \rightarrow Ca(OH)_2$

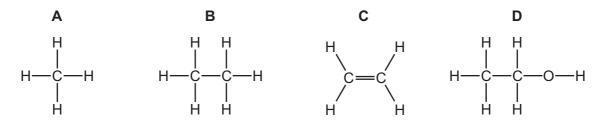
Which terms describe reactions 1 and 2?

	reaction 1	reaction 2
Α	reduction	hydration
В	B reduction hydrolysis	
С	C thermal decomposition hydration	
D	thermal decomposition	hydrolysis

35 Fuel oil, gasoline, kerosene and naphtha are four fractions obtained from the fractional distillation of petroleum.


What is the order of the boiling points of these fractions?

	highest boiling point $ ightarrow$ lowest boiling point
Α	fuel oil \rightarrow kerosene \rightarrow gasoline \rightarrow naphtha
В	fuel oil $ ightarrow$ kerosene $ ightarrow$ naphtha $ ightarrow$ gasoline
С	gasoline \rightarrow naphtha \rightarrow kerosene \rightarrow fuel oil
D	naphtha \rightarrow gasoline \rightarrow kerosene \rightarrow fuel oil


36 Butane and methylpropane are isomers with molecular formula C_4H_{10} .

Which statements are correct?

- 1 They have similar chemical properties.
- 2 They have the same general formula.
- 3 They have the same structural formula.
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- **37** The diagram shows part of the molecule of a polymer.

Which diagram shows the monomer from which this polymer could be manufactured?

38 Ethanol can be produced by fermentation or by the catalytic addition of steam to ethene.

Which row shows an advantage and a disadvantage for each process?

	fermentation advantage disadvantage		catalytic addition of steam to ethene	
			advantage	disadvantage
Α	batch process	slow reaction	continuous process	fast reaction
В	fast reaction	continuous process	pure ethanol formed	renewable raw material
С	renewable batch raw material process		pure ethanol formed	slow reaction
D	renewable impure ethanol raw material formed		fast reaction	finite raw material

39 The structure of an ester is shown.

Which alcohol and carboxylic acid produce this ester?

	alcohol	carboxylic acid
Α	ethanol	ethanoic acid
В	ethanol	propanoic acid
С	propanol	ethanoic acid
D	propanol	propanoic acid

- **40** How can the amino acids in a protein be separated and identified?
 - A Add a locating agent to the protein.
 - **B** Hydrolyse the protein and then use chromatography.
 - C Polymerise the protein and then add a locating agent.
 - **D** Use chromatography on a solution of the protein.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

Group																	
I	П												IV	V	VI	VII	VIII
Key 1																2 He helium 4	
3	4	atomic number						1				5	6	7	8	9	10
Li	Be		ato	mic sym	bol							В	С	Ν	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9	relative atomic mass									11	12	14	16	19	20	
11 No	12 N/ G											13 A 7	14 C:	15 P	16 C	17 C 1	18
Na	Mg											A <i>l</i>	Si silicon	•	S sulfur	C1 chlorine	Ar
sodium 23	magnesium 24											aiuminium 27	28	phosphorus 31	32	35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37 Db	38	39 V	40	41 N.I.	42 N 4 a	43 T a	44 D.	45 Db	46	47 A =:	48	49 T	50	51 Ch	52 T -	53 T	54
Rb	Sr	ı .	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	_	-
87	88	89–103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F1		Lv		
francium	radium —		rutherfordium —	dubnium _	seaborgium —	bohrium —	hassium —	meitnerium —	darmstadtium –	roentgenium -	copernicium —		flerovium —		livermorium —		
	_		_	_	_	_	_	_	_	_	_	l	_		_		

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium —	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
actinoids	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	_	232	231	238	-	_	_	-	_	_	_	_	_	_	_

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).