MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

1	$\begin{aligned} & \frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A) \cos A} \\ & \frac{\cos ^{2} A+1+2 \sin A+\sin ^{2} A}{(1+\sin A) \cos A} \\ & =\frac{2(1+\sin A)}{(1+\sin A) \cos A} \\ & =\frac{2}{\cos A}=2 \sec A \end{aligned}$ Alternative: $\begin{aligned} & \frac{\cos A(1-\sin A)}{(1+\sin A)(1-\sin A)}+\frac{1+\sin A}{\cos A} \\ & =\frac{\cos A(1-\sin A)}{1-\sin ^{2} A}+\frac{1+\sin A}{\cos A} \\ & =\frac{\cos A(1-\sin A)}{\cos ^{2} A}+\frac{1+\sin A}{\cos A} \\ & =\frac{1-\sin A}{\cos A}+\frac{1+\sin A}{\cos A} \\ & =\frac{2}{\cos A}=2 \sec A \end{aligned}$		M1 for obtaining a single fraction, correctly M1 for expansion of $(1+\sin A)^{2}$ and use of identity DM1 for factorisation and cancelling of $(1+\sin A)$ factor A1 for use of $\frac{1}{\cos A}=\sec A$ and final answer M1 for multiplying first term by $\frac{1-\sin A}{1-\sin A}$ M1 for expansion of $(1-\sin A)(1+\sin A)$ and use of identity M1 for simplification of the 2 terms A1 for use of $\frac{1}{\cos A}=\sec A$ and final answer
(i) (b) (i) (ii) (iii)	6 5 9	B1 B1 B1 B1 B1	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

3 (i)	 Maximum point occurs when $y=\frac{25}{8}$ so $k>\frac{25}{8}$	B1 B1 B1 M1 A1	B1 for shape B1 for $y=2$ (must have a graph) B1 for $x=-0.5$ and 2 (must have a graph) M1 for obtaining the value of y at the maximum point, by either completing the square, differentiation, use of discriminant or symmetry. Must have the correct sign for A1 Ignore any upper limits
4	$\begin{aligned} & \int_{0}^{a} \sin 3 x \mathrm{~d} x=\frac{1}{3} \mathrm{~d} x=\frac{1}{3} \\ & {\left[-\frac{2}{3} \cos 3 x\right]_{0}^{a}=\frac{1}{3}} \\ & \left(-\frac{2}{3} \cos 3 a\right)^{2}-\left(-\frac{2}{3}\right)=\frac{1}{3} \\ & \cos 3 a=0.5 \\ & 3 a=\frac{\pi}{3}, a=\frac{\pi}{9} \end{aligned}$	B1,B1 M1 A1 M1 A1	B1 for $k \cos 3 x$ only, B1 for $-\frac{2}{3} \cos 3 x$ only M1 for correct substitution of the correct limits into their result A1 for correct equation M1 for correct method of solution of equation of the form $\cos m a=k$ A1 allow 0.349 , must be a radian answer
5 (i) (ii)	$2^{5 x} \times 2^{2 y}=2^{-3}$ leads to $5 x+2 y=-3$ $7^{x} \times 49^{2 y}=1$ can be written as $x+4 y=0$ Solving $5 x+2 y=-3$ and $x+4 y=0$ leads to $x=-\frac{2}{3}, y=\frac{1}{6}$	B1, B1 DB1 B1 B1 M1 A1	B1 for $2^{2 y}, \mathbf{B} 1$ for $2^{-3}, \mathbf{B} 1$ for dealing with indices correctly to obtain given answer B1 for either $7^{4 y}$ or 7^{0} seen B1 for $x+4 y=0$ M1 for solution of their simultaneous equations, must both be linear A1 for both, allow equivalent fractions only

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

6 (a)	$\mathbf{Y X}$ and $\mathbf{Z Y}$	B1,B1	B1 for each, must be in correct order,
(b)	$\mathbf{B}=\mathbf{A}^{-1}\left(\begin{array}{ll} 3 & 9 \\ -6 & -3 \end{array}\right)$	M1	M1 for pre-multiplication by \mathbf{A}^{-1}
	$=-\frac{1}{3}\left(\begin{array}{ll} 1 & 2 \\ 4 & 5 \end{array}\right)\left(\begin{array}{cc} 3 & 9 \\ -6 & -3 \end{array}\right)$	B1,B1	B1 for $-\frac{1}{3}, \mathbf{B 1}$ for $\left(\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right)$
	$=-\frac{1}{3}\left(\begin{array}{ll} -9 & 3 \\ -18 & 21 \end{array}\right) \text { or }\left(\begin{array}{ll} 3 & -1 \\ 6 & -7 \end{array}\right)$	DM1 A1	DM1 for attempt at matrix multiplication A1 allow in either form
	Alternative method:		
	$\left(\begin{array}{ll} 5 & -2 \\ -4 & 1 \end{array}\right)\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)=\left(\begin{array}{ll} 3 & 9 \\ -6 & -3 \end{array}\right)$	M1	M1 for a complete method to obtain 4 equations
	Leads to $5 a-2 c=3,5 b-2 d=9$ $-4 a+c=-6,-4 b+d=-3$	A2,1,0	-1 for each incorrect equation
	Solutions give matrix	M1	M1 for solution to find 4 unknowns
	$-\frac{1}{3}\left(\begin{array}{ll} -9 & 3 \\ -18 & 21 \end{array}\right) \text { or }\left(\begin{array}{ll} 3 & -1 \\ 6 & -7 \end{array}\right)$	A1	A1 for a correct, final matrix

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0606	12

\begin{tabular}{|c|c|c|c|}
\hline \(7 \quad\) (i) \& \begin{tabular}{l}
\(\sin \frac{\theta}{2}=\frac{6}{8}, \frac{\theta}{2}=0.8481\) or better \\
or \(12^{2}=8^{2}+8^{2}-128 \cos \theta\) \\
\(\theta=1.6961\) or better \\
or using areas \\
\(\frac{1}{2} \times 12 \times 2 \sqrt{7}=\frac{1}{2} 8^{2} \sin \theta\) oe \(\sin \theta=0.9922, \theta=1.4455\) or 1.6961
\end{tabular} \& M1

A1

M1

A1 \& | M1 for a complete method to find either θ or $\frac{\theta}{2}$ |
| :--- |
| Answer given. |
| M1 for using the area of the triangle in 2 different forms A1 for choosing the correct angle. |

\hline \multirow[t]{2}{*}{(ii)} \& $$
\begin{aligned}
& \text { Arc length }=(2 \pi-1.696) \times 8 \\
& (36.697 \text { or } 36.7)
\end{aligned}
$$ \& M1

A1 \& | M1 for correct attempt at a minor or major arc length |
| :--- |
| A1 for correct major arc length, allow unsimplified |

\hline \& $$
\begin{aligned}
\text { Perimeter } & =12+(2 \pi-1.696) \times 8 \\
& =48.7
\end{aligned}
$$ \& A1 \& A1 for 48.7 or better

\hline \multirow[t]{2}{*}{(iii)} \& \[
$$
\begin{aligned}
\text { Area } & =\frac{8^{2}}{2}(2 \pi-1.696)+\frac{8^{2}}{2} \sin 1.696 \\
& =178.5,178.6, \text { awrt } 179
\end{aligned}
$$

\] \& | M1,M1 |
| :--- |
| A1 | \& | M1 for correct attempt to find area of major sector |
| :--- |
| M1 for correct attempt to find area of triangle, using any method |

\hline \& Alternative:

$$
\text { Area }=\pi 8^{2}-\left(\frac{1}{2} 8^{2}(1.696)-\frac{8^{2}}{2} \sin 1.696\right)
$$ \& \& M1 for attempt at area of circle area of minor sector M1 for area of triangle

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

8 (a) (i)	720	B1	
(ii)(iii)	240	B1	
	Starts with either a 2 or a 4: 48 ways	B1	allow unevaluated
(iii)	Does not start with either a 2 or a 4: 96 ways (i.e. starts with 1 or 5)	B1	allow unevaluated
	Total $=144$	B1	must be evaluated
	Alternative 1:		
	Ends with a 2, starts with a 1,4 or 5:72 ways	B1	
	Ends with a 4, starts with a 1,2 or $5: 72$ ways	B1	
	Total $=144$	B1	
	Alternative 2:		
	$\begin{gathered} 240-\left(2 \times 2 \times{ }^{4} P_{3}\right) \text { or }\left(4 \times{ }^{4} P_{3} \times 2\right)-\left(2^{4} P_{3}\right) \\ =144 \end{gathered}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B2 for correct expression seen, allow P notation
	Alternative 3:		
	${ }^{3} P_{1} \times{ }^{4} P_{3} \times{ }^{2} P_{1}$ or $3 \times 4 \times 2$	B2	Allow P notation here, for B2
	$=144$	B1	
(b)	With twins: ${ }^{16} C_{4}(=1820)$	B1	
	Without twins: ${ }^{16} C_{6}(=8008)$	B1	
	Total: 9828	B1	
	Alternative:		
	$\begin{aligned} & { }^{18} C_{6}-\left(2 \times{ }^{16} C_{5}\right) \\ & =9828 \end{aligned}$	$\begin{gathered} \text { B1,B1 } \\ \text { B1 } \end{gathered}$	B1 for ${ }^{18} C_{6}-\ldots .$, , B1 for $2 \times{ }^{16} C_{5}$

Page 7 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0606	12

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

10 (i)	$\begin{aligned} \text { Velocity } & =26 \times \frac{1}{13}(5 \mathbf{i}+12 \mathbf{j}) \\ & =10 \mathbf{i}+24 \mathbf{j} \end{aligned}$	M1 A1	$\mathbf{M} 1 \text { for } \frac{1}{13}(5 \mathbf{i}+12 \mathbf{j})$
	Alternative 1: $\begin{aligned} \|10 \mathbf{i}+24 \mathbf{j}\| & =\sqrt{10^{2}+24^{2}} \\ & =26 \end{aligned}$	M1	M1 for working from given answer to obtain the given speed
	Showing that one vector is a multiple of the other, hence same direction	A1	A1 for a completely correct method
	Alternative 2: $\begin{aligned} & \sqrt{5^{2}+12^{2}}=13,13 k=26 \text {, so } k=2 \\ & \text { Velocity }=2(5 \mathbf{i}+12 \mathbf{j}) \end{aligned}$	M1	M1 for attempt to obtain the 'multiple' and apply to the direction vector
	Velocity $=10 \mathbf{i}+24 \mathbf{j}$	A1	A1 for a completely correct method
	Alternative 3:		
	Use of trig: $\tan \alpha=\frac{12}{5}, \alpha=67.4^{\circ}$		
	Velocity $26 \cos 67.4^{\circ} \mathbf{i}+26 \sin 67.4 \mathbf{j}$	M1	M1 for reaching this stage
	Velocity $=10 \mathbf{i}+24 \mathbf{j}$	A1	A1 for a completely correct method
(ii)	$\begin{aligned} & \text { Position vector }=4(10 \mathbf{i}+24 \mathbf{j}) \\ & \text { or } 40 \mathbf{i}+96 \mathbf{j} \end{aligned}$	B1	Allow either form for B1
(iii)	$(40 \mathbf{i}+96 \mathbf{j})+(10 \mathbf{i}+24 \mathbf{j}) t$ oe	M1	M1 for their $(\mathbf{i i})+(10 \mathbf{i}+24 \mathbf{j}) t$ or $(10 \mathbf{i}+24 \mathbf{j}) \times(t+4)$
		A1	A1 correct answer only
(iv)	$(120 \mathbf{i}+81 \mathbf{j})+(-22 \mathbf{i}+30 \mathbf{j}) t \quad$ oe	B1	
(v)	$\begin{aligned} & 40+10 t=120-22 t \text { or } \\ & 96+24 t=81+30 t \end{aligned}$	M1	M1 for equating like vectors
	$t=2.5$ or 18:30	A1	A1 Allow for $t=2.5$
	Position vector $=65 \mathbf{i}+156 \mathbf{j}$	DM1	DM1 for use of t to obtain position vector
		A1	A1 cao

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

