MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme		Syllabus	Paper	
		IGCSE – May/June 2014		0606	21	
1	r^2	- x[> 0]	M1	1 expands and rearranges		
1	$x^{-} + x \ge 0$ critical values 0 and -1 soi		A1	expands and realizinges		
	-1<	< <i>x</i> < 0	A1	condone space, comma, "and" but not "or" Mark final answer.		
2	$\frac{1}{(1+1)}$	$\frac{6}{\sqrt{3}}^{2}$ or $6 = (a + b\sqrt{3})(1 + \sqrt{3})^{2}$	M1	for dealing with (condone treat negative index a	the negative index ing 6 as hav t this stage)	د ve
	$\frac{6}{4+2}$	$\frac{6}{2\sqrt{3}}$ or $6 = (a + b\sqrt{3})(4 + 2\sqrt{3})$	M1	for squaring		
	$\frac{4}{4+2}$	$\frac{5}{2\sqrt{3}} \times \frac{4 - 2\sqrt{3}}{4 - 2\sqrt{3}}$ AND attempting to multiply	M1	for rationalising or for obtaining a pair of simultaneous equations 4a + 6b = 6 and		
	6-3	$3\sqrt{3}$ isw	A1	2a + 4b = 0		
3 (i)			B1 B1	correct shape <i>x</i> intercepts marl tick marks, for e nearby; condone	xed or implied by xample or seen y intercept omitted	;d
(ii)	$x = 1$ $y = \pm$ $0 < k$	(only) soi = 9 (only) & < 9	B1 B1 B1	can be implied b or $k = \pm 9, +9$ or must be strict into condone space, of "or"	y second B1 -9 or both; equality in <i>k</i> ; comma, "and",	
4	Atter	mpt to find $f(4)$ or $f(1)$ or division to a under	M1	condone one erro	or	
	128 - (16 <i>a</i>	+16a + 4b + 12 = 0 or better + 4b = -140)	A1			
	2+0	a + b + 12 = -12 or better $(a + b = -26)$	A1			
	Solv	es linear equations in <i>a</i> and <i>b</i>	M1			
	a = -	-3, b = -23	A1	both		

Page 3		3 Mark Scheme		Syllabus	Paper	
			IGCSE – May/June 2014		0606	21
5	(i) (ii)	$2\left(x\right)$ $\frac{47}{8}i$	$\left(-\frac{1}{4}\right)^{2} + \frac{47}{8}(5.875)$ isw s min value when $x = \frac{1}{4}$	B3,2,1,0 B1ft + B1ft	one mark for each of <i>p</i> , <i>q</i> , <i>r</i> correct; allow correct equivalent values. If B0 , then SC2 for $2\left(x-\frac{1}{4}\right)+\frac{47}{8}$, or SC1 for correct values but incorrect format strict ft <i>their</i> $\frac{47}{8}$ and <i>their</i> $\frac{1}{4}$; each value must be correctly attributed; condone $y = \frac{47}{8}$ for B1 , or $\left(\frac{1}{4}, \frac{47}{8}\right)$ for B1B1	
6	(a)	⁸ C ₃	$\times 3^{3} \times (\pm 2)^{5} \text{ or } 3^{8} \left[{}^{8}C_{3} \left(\pm \frac{2}{3} \right)^{5} \right]$	M1	condone ${}^{8}C_{5}, -2$	$2x^5$
		-483	84	A1	can be in expans	ion
	(b) (i)	1 + 1	$2x + 60x^2$	B2,1,0	ignore additional terms. If B allow M1 for 3 correct unsimplified terms	
	(ii)	Coef Coef	ficient of x correct or correct ft (12+a) soi ficient of x^2 correct or correct ft (60+12a) soi	B1ft B1ft	ft their $1 + 12x + 60x^2$ ft their $1 + 12x + 60x^2$	
		1.5× -4	their(12+a) = their(60+12a)	M1 A1	no x or x^2	
7	(i)	$-\frac{1}{x^2}$	$-+\frac{1}{x^{\frac{1}{2}}}$	B1 + B1	or equivalent wit	th negative indices
	(ii)	$\frac{2}{x^3}$	$-\frac{1}{2x^{\frac{3}{2}}}$	B1ft + B1ft	or equivalent wi Strict ft	th negative indices.
	(iii)	Atte	npting to solve <i>their</i> $\frac{dy}{dx} = 0$	M1	must achieve <i>x</i> =	(allow slips)
			<i>y</i> = 3	A1	SC2 for (1, 3) stated, nfww	
		Subs	titute <i>their</i> $x = 1$ into <i>their</i> $\frac{d^2 y}{dx^2}$; or examines	M1	for using <i>their</i> value from $\frac{dy}{dx} = 0$	
		$\frac{\mathrm{d}y}{\mathrm{d}x}$	or <i>y</i> on both sides of <i>their</i> $x = 1$			
		Com If co	plete and correct determination of nature. rrect, minimum.	A1	must be from correct work	

Page 4		Mark Scheme		Syllabus	Paper		
		IGCSE – May/June 2014		0606	21		
8 (i)	2 <i>r</i> +	$r\theta = 30$ giving $\theta = \frac{30 - 2r}{r}$	M1	correct arc formula + (2) <i>r</i> rearranged			
	Subs	titute <i>their</i> expression for θ into $A = \frac{1}{2}r^2\theta$	M1				
	Corr	ect simplification to $A = 15r - r^2$ AG	A1				
(ii)	15 – r = 7 56.2	2r = 0 7.5 5	M1 A1 A1	their $\frac{dA}{dr} = 0$ 56.3 is A0 unless 56.25 seen; if M0, then SC2 for $A = 56.25$ with			
				no working; or S with no working	SC1 for $r = 7.5$		
9 (i)	(3, 5))	B1B1	column vector B	column vector B0B1		
(ii)	m _{BD}	$\left(=\frac{6-4}{1-5}\right) = -\frac{1}{2}$	M1	can be implied by second M1			
	m_{AC}	$\left(=-1\div-\frac{1}{2}\right)$ seen or used	M1				
	y – 5	5 = 2(x-3) or $y = 2x + c$, $c = -1$ or better	A1				
(iii)	p = 1 Meth	q = 7 [A(1, 1) C(4, 7)] nod for finding area numerically	M1 M1	could be in (ii) e.g.			
				$24 - \left(\frac{1}{2} \times 1 \times 3 + \right)$	$\left(\frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 4\right)$		
				or shoelace meth	nod		
	15 A1		A1	SC2 for 15 with no working			
10 (i)	-2 s	in 2x and $\frac{1}{3}\cos\left(\frac{x}{3}\right)$	B1+B1	each trig functio differentiated	n correctly		
	Atten	npt at product rule	M1				
	$\frac{1}{3}$ co	$s 2x \cos\left(\frac{x}{3}\right) - 2\sin 2x \sin\left(\frac{x}{3}\right)$ isw	A1ft	ft $k_1 \sin 2x$ and	$k_2 \cos\left(\frac{x}{3}\right)$		
	. 1			provided k_{1, k_2} are non-zero			
(ii)	$\sec^2 x$ and $\frac{1}{x}$		B1 + B1				
	Atter	mpt at quotient rule (with given quotient) $(1 + \ln x) - \frac{1}{(\tan x)}$	M1	or rearrangement to correct product and attempt at product rule			
	$\frac{1}{\left(1+\ln x\right)^2} \frac{x}{\left(1+\ln x\right)^2}$ is w			penalise poor brarecovered	acketing if not		

	Page 5	Page 5 Mark Scheme			Syllabus	Paper	
		IGCSE – May/June 2014			0606	21	
					•		
1	1 (a)	$2^{x^2-x^2}$	$5x = 2^{-6}$	M1	Or $(x^2 - 5x)\ln 2$	$=\ln\left(\frac{1}{64}\right) = -6\ln(1)$	n2
		$x^2 - 3$	5x + 6 = 0	M1	their "6"		
		Corre quad	ect method of solution of their 3 term ratic	M1			
		<i>x</i> = 2	or $x = 3$	A1			
	(b)	Corr	ect change of base to $\frac{\log_a 4}{\log_a 2a}$	B 1	base <i>a</i> only at th recover at end	is stage but can	
		$\overline{\log_a}$	$\frac{\log_a 4}{2 + \log_a a}$	M1	for $\log 2a = \log 2$	$2 + \log a$	
		\log_a	a = 1 used soi	M1			
		simp	lification to $\log_a 4$	A1			

Page 6		Mark Scheme		Syllabus	Paper			
		IGCSE – May/June 2014 0606		0606	21			
-								
12 (i)	$f(3) = \frac{6}{4} o \epsilon$		M1 A1	or $fg(x) = \frac{2\sqrt{(x+1)}}{\sqrt{(x+1)+1}}$ allow omission of 2() in numerator or () + 1 in denominator, but not both.				
(ii)	$\frac{2\left(\frac{1}{x}\right)^2}{\frac{2x}{x+1}}$	$\frac{2x}{+1}$ $\frac{1}{1}$	M1					
	A co	rrect and valid step in simplification	dM1	e.g. multiplying denominator by .	numerator and $x + 1$, or			
				simplifying $\frac{2x}{x+1}$	$\frac{x}{1} + 1$ to			
	Corr	ectly simplified to $\frac{4x}{3x+1}$	A1	<i>x</i> + 1				
(iii)	Putti chan vice	ng $y = g(x)$, ging subject to x and swopping x and y or versa	M1	condone $x = y^2$ – attempt at correct	-1; reasonable et method			
	$g^{-1}(x)$	$) = x^2 - 1$	A1	condone $y = \dots$	$, f^{-1} = \dots$			
	(Dor (Ran	main) $x > 0$ ge) $g^{-1}(x) > -1$	B1 B1	condone $y > -1$	$f^{-1} > -1$			
(iv)			B1 + B1 B1	correct graphs; - labelled but coul 'one square' idea of reflection line $y = x$ must b	-1 need not be ld be implied by n or symmetry in be stated.			