MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	21

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
\[
x^{2}+x[>0]
\] \\
critical values 0 and -1 soi
\[
-1<x<0
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
expands and rearranges \\
condone space, comma, "and" but not "or" Mark final answer.
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
\[
\frac{6}{(1+\sqrt{3})^{2}} \text { or } 6=(a+b \sqrt{3})(1+\sqrt{3})^{2}
\] \\
\(\frac{6}{4+2 \sqrt{3}}\) or \(6=(a+b \sqrt{3})(4+2 \sqrt{3})\) \(\frac{6}{4+2 \sqrt{3}} \times \frac{4-2 \sqrt{3}}{4-2 \sqrt{3}}\) AND attempting to multiply out
\[
6-3 \sqrt{3} \text { isw }
\]
\end{tabular} \& M1
M1
M1

A1 \& | for dealing with the negative index (condone treating 6 as have negative index at this stage) |
| :--- |
| for squaring |
| for rationalising or for obtaining a pair of simultaneous equations $\begin{aligned} & 4 a+6 b=6 \text { and } \\ & 2 a+4 b=0 \end{aligned}$ |

\hline | 3 |
| :--- |
| (i) |
| (ii) | \&

\[
$$
\begin{aligned}
& x=1 \text { (only) soi } \\
& y= \pm 9 \text { (only) } \\
& 0<k<9
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 |
| B1 | \& | correct shape x intercepts marked or implied by tick marks, for example or seen nearby; condone y intercept omitted |
| :--- |
| can be implied by second B1 or $k= \pm 9,+9$ or -9 or both; must be strict inequality in k; condone space, comma, "and", "or" |

\hline 4 \& | Attempt to find $f(4)$ or $f(1)$ or division to a remainder |
| :--- |
| $128+16 a+4 b+12=0$ or better |
| $(16 a+4 b=-140)$ |
| $2+a+b+12=-12$ or better $(a+b=-26)$ |
| Solves linear equations in a and b $a=-3, b=-23$ | \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 | \& | condone one error |
| :--- |
| both |

\hline
\end{tabular}

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	21

5 (i) (ii)	$2\left(x-\frac{1}{4}\right)^{2}+\frac{47}{8}(5.875)$ isw $\frac{47}{8}$ is \min value when $x=\frac{1}{4}$	$\begin{gathered} \mathbf{B 3 , 2 , 1 , 0} \\ \\ \\ \hline \begin{array}{c} \text { B1ft + } \\ \text { B1ft } \end{array} \end{gathered}$	one mark for each of p, q, r correct; allow correct equivalent values. If B0, then SC2 for $2\left(x-\frac{1}{4}\right)+\frac{47}{8}$, or SC1 for correct values but incorrect format strict ft their $\frac{47}{8}$ and their $\frac{1}{4}$; each value must be correctly attributed; condone $y=\frac{47}{8}$ for $\mathbf{B 1}$, or $\left(\frac{1}{4}, \frac{47}{8}\right)$ for $\mathbf{B} 1$ B1
6 (a) (b) (i) (ii)	$\begin{aligned} & { }^{8} C_{3} \times 3^{3} \times(\pm 2)^{5} \text { or } 3^{8}\left[{ }^{8} C_{3}\left(\pm \frac{2}{3}\right)^{5}\right] \\ & -48384 \\ & 1+12 x+60 x^{2} \end{aligned}$ Coefficient of x correct or correct $\mathbf{f t}(12+a)$ soi Coefficient of x^{2} correct or correct $\mathbf{f t}(60+12 a)$ soi $\begin{aligned} & 1.5 \times \text { their }(12+a)=\text { their }(60+12 a) \\ & -4 \end{aligned}$	M1 A1 B2,1,0 B1ft B1ft M1 A1	condone ${ }^{8} C_{5},-2 x^{5}$ can be in expansion ignore additional terms. If B0, allow M1 for 3 correct unsimplified terms ft their $1+12 x+60 x^{2}$ ft their $1+12 x+60 x^{2}$ no x or x^{2}
7 (i) (ii) (iii)	$\begin{aligned} & -\frac{1}{x^{2}}+\frac{1}{x^{1 / 2}} \\ & \frac{2}{x^{3}}-\frac{1}{2 x^{3 / 2}} \end{aligned}$ Attempting to solve their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ $x=1 \quad y=3$ Substitute their $x=1$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$; or examines $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or y on both sides of their $x=1$ Complete and correct determination of nature. If correct, minimum.	$\mathbf{B} 1+\mathbf{B} 1$ B1ft + B1ft M1 A1 M1 A1	or equivalent with negative indices or equivalent with negative indices. Strict $\mathbf{f t}$ must achieve $x=\ldots$ (allow slips) SC2 for $(1,3)$ stated, nfww for using their value from $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ must be from correct work

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	21

8 (i) (ii)	$2 r+r \theta=30 \text { giving } \theta=\frac{30-2 r}{r}$ Substitute their expression for θ into $A=\frac{1}{2} r^{2} \theta$ Correct simplification to $A=15 r-r^{2}$ AG $\begin{aligned} & 15-2 r=0 \\ & r=7.5 \\ & 56.25 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	correct arc formula $+(2) r$ rearranged their $\frac{\mathrm{d} A}{\mathrm{~d} r}=0$ 56.3 is $\mathbf{A 0}$ unless 56.25 seen; if M0, then $\mathbf{S C 2}$ for $A=56.25$ with no working; or SC1 for $r=7.5$ with no working
(i) (ii) (iii)	$(3,5)$ $m_{B D}\left(=\frac{6-4}{1-5}\right)=-\frac{1}{2}$ $m_{A C}\left(=-1 \div-\frac{1}{2}\right)$ seen or used $y-5=2(x-3)$ or $y=2 x+c, c=-1$ or better $p=1 q=7[A(1,1) C(4,7)]$ Method for finding area numerically	B1B1 M1 M1 A1 M1 M1 A1	column vector B0B1 can be implied by second M1 could be in (ii) e.g. $24-\left(\frac{1}{2} \times 1 \times 3+\frac{1}{2} \times 1 \times 3+\frac{1}{2} \times 4\right)$ or shoelace method SC2 for 15 with no working
10 (i) (ii)	$-2 \sin 2 x \text { and } \frac{1}{3} \cos \left(\frac{x}{3}\right)$ Attempt at product rule $\frac{1}{3} \cos 2 x \cos \left(\frac{x}{3}\right)-2 \sin 2 x \sin \left(\frac{x}{3}\right)$ isw $\sec ^{2} x \text { and } \frac{1}{x}$ Attempt at quotient rule (with given quotient) $\frac{\left(\sec ^{2} x\right)(1+\ln x)-\frac{1}{x}(\tan x)}{(1+\ln x)^{2}} \text { isw }$	B1+B1 M1 A1ft B1 + B1 M1 A1	each trig function correctly differentiated ft $k_{1} \sin 2 x$ and $k_{2} \cos \left(\frac{x}{3}\right)$ provided k_{1}, k_{2} are non-zero or rearrangement to correct product and attempt at product rule penalise poor bracketing if not recovered

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	21

11 (a)	$2^{x^{2}-5 x}=2^{-6}$	M1 M1	$\text { Or }\left(x^{2}-5 x\right) \ln 2=\ln \left(\frac{1}{64}\right)=-6 \ln 2$
	$x^{2}-5 x+6=0$		their 6
	Correct method of solution of their 3 term quadratic	M1	
	$x=2$ or $x=3$	A1	
(b)	Correct change of base to $\frac{\log _{a} 4}{\log _{a} 2 a}$	B1	base a only at this stage but can recover at end
	$\frac{\log _{a} 4}{\log _{a} 2+\log _{a} a}$	M1	for $\log 2 a=\log 2+\log a$
	$\log _{a} a=1 \text { used soi }$	M1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	21

