MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	22

1	rationalise the denominator to get $\frac{(2+\sqrt{5})^{2}(\sqrt{5}+1)}{5-1}$ or better squaring to get $\frac{(4+4 \sqrt{5}+5)(\sqrt{5}+1)}{\text { their } 4}$ or better $\frac{29}{4}+\frac{13}{4} \sqrt{5}$ oe isw	M1 M1 A1 + A1	or squaring to get $\frac{(4+4 \sqrt{5}+5)}{\sqrt{5}-1}$ or better or rationalising the denominator to get $\frac{\text { their }(9+4 \sqrt{5})(\sqrt{5}+1)}{5-1}$ or better correct simplification Allow $\frac{29+13 \sqrt{5}}{4}$ etc.
2	Correctly eliminate y	M1	$-k x+2=2 x^{2}-9 x+4$ oe
	$2 x^{2}+(k-9) x+2[=0]_{\mathrm{oe}}$	A1	allow even if x terms not collected; condone $\ldots=y$ provided later work implies it should be 0
	Use $b^{2}-4 a c$ oe	M1	must be applied to a 3 term quadratic expression containing k as a coefficient; condone <0 etc.
	Reach their $(k-9= \pm 4)$ or solves their $\left(k^{2}-18 k+65\right)=0$	M1	condone $9-k= \pm 4$; condone an inequality at this stage
	$k=5$ and 13 cao	A1	mark final answer, do not isw; A0 if inequalities for final answers

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	22

3 (i)	$3(-1)^{3}-14(-1)^{2}-7(-1)+d=0$ with completion to $d=10$	B1	at least $-3-14+7+d=0$, $d=10$; N.B. $=0$ must be seen or implied by $\ldots=d$ or $\ldots=-d$, may be seen in following step. or convincingly showing $3(-1)^{3}-14(-1)^{2}-7(-1)+10=0$; at least $-3-14+7+10=0$ or correct synthetic division at least as far as
(ii)	$3 x^{2}-17 x+10$ isw or $a=3, b=-17, c=10$ isw	B2, 1, 0	-1 each error; must be seen or referenced in (ii) even if found in (i) or (iii)
(iii)	$(x+1)(x-5)(3 x-2)$	M1	for factorising quadratic $\mathbf{f t}$ correct; condone omission of $(x+1)$ or for $\mathbf{f t}$ correct use of formula or $\mathbf{f t}$ correct completing the square
	$-1,5, \frac{2}{3}$	A1	If M0 then SC1 for all three roots stated without working or verified/found by trials

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	22

4 (i)	$12\left(x-\frac{1}{4}\right)^{2}+\frac{17}{4}$ isw	B3, 2, 1,0	one mark for each of p, q, r correct in a correctly formatted expression; allow correct equivalent values; If $\mathbf{B 0}$ then $\mathbf{S C} \mathbf{2}$ for $12\left(x-\frac{1}{4}\right)+\frac{17}{4}$ or SC1 for correct 3 values seen in incorrect format e.g. $12\left(x-\frac{1}{4} x\right)+\frac{17}{4}$ or $12\left(x^{2}-\frac{1}{4}\right)+\frac{17}{4}$ or for a correct completed square form of the original expression in a different but correct format. e.g. $3\left(2 x-\frac{1}{2}\right)^{2}+\frac{17}{4}$
(ii)	their $\frac{4}{17}$ or their 0.235 their $x=\frac{1}{4}$ oe	B1ft B1ft	strict $\mathbf{f t}$; their $\frac{4}{17}$ must be a proper fraction or decimal rounded to 3sig figs or more or truncated to 4 figs or more strict $\mathbf{f t}$; x must be correctly attributed
5 (i)	$1-20 x+160 x^{2}$	B2, 1, 0	-1 each error if $\mathbf{B 0}$ then $\mathbf{M 1}$ for 3 correct terms seen; may be unsimplified e.g. $1,5(-4 x), \frac{5 \times 4}{2}(-4 x)^{2}$
	$a+(\text { their }-20)=-23 \text { soi }$	M1	condone sign errors only; must be their -20 from (i)
	$a=-3$	A1	validly obtained
	$b+(\text { their }-20) a+(\text { their } 160)=222 \text { soi }$	M1	condone sign errors only ; must be their -20 and their 160 from (i) and their a if used
		A1	validly obtained

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	22

6 (a) (i) (ii) (b)	1 $x=-1$ or -2 $\frac{\log _{3} 5}{\log _{3} a}$ seen or implied $2 \log _{3} 15=\log _{3} 15^{2}$ seen or implied $\log _{3} 15^{2}-\log _{3} 5=\log _{3}\left(\frac{15^{2}}{5}\right)$ $\log _{3} 45$ cao	B1 + B1 B1* B1 B1dep* B1	as final answers may be implied by $2 \log _{3} 15-\log _{3} 5$ not from wrong working must be 45 not e.g. $\frac{225}{5}$; with no wrong working seen
$7 \quad$ (i) (ii) (iii)	$\begin{aligned} & x^{4}\left(3 \mathrm{e}^{3 x}\right)+4 x^{3} \mathrm{e}^{3 x} \text { isw } \\ & \frac{1}{2+\cos x} \times(-\sin x) \text { isw } \\ & \frac{\mathrm{d}}{\mathrm{~d} x}(\sin x)=\cos x \text { soi } \\ & \frac{\mathrm{d}}{\mathrm{~d} x}(1+\sqrt{x})=\frac{1}{2} x^{-\frac{1}{2}} \text { soi } \\ & \frac{(1+\sqrt{x}) \text { their } \cos x-\left(\text { their } \frac{1}{2} x^{-\frac{1}{2}}\right) \sin x}{(1+\sqrt{x})^{2}} \text { isw } \end{aligned}$	B1 + B1 B2 B1 B1 B1ft	each term of the sum correct; must be a sum of two terms or B1 for $\frac{1}{2+\cos x} \times(k \pm \sin x)$ and k a constant for correct form of quotient rule ft their $\cos x$ and their $\frac{1}{2} x^{-\frac{1}{2}}$; allow correct use of product and chain rules to obtain $\sin x\left(-(1+\sqrt{x})^{-2} \times \frac{1}{2} x^{\frac{1}{2}}\right)+$ $\cos x(1+\sqrt{x})^{-1}$ oe

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	$\mathbf{2 2}$

8	Substitution of either $x-5$ or $y+5$ into equation of curve and brackets expanded $2 x^{2}-8 x-10[=0]$ or $2 y^{2}+12 y[=0]$ obtained Solving their quadratic $(-1,-6)$ oe and $(5,0)$ oe isw $\sqrt{72}$ or $6 \sqrt{2}$ cao isw	$\begin{gathered} \text { M1 } \\ \\ \text { A1 } \\ \text { M1 } \\ \text { A1*+A1* } \\ \text { B1dep* } \end{gathered}$	condone one sign error in either equation of curve or expansion of brackets; condone omission of $=0$, BUT $x-5$ or $y+5$ must be correct dep on a valid substitution attempt or A1 for correct pair of x coordinates or correct pair of y coordinates
(i) (ii)	$\begin{aligned} & {[y=] \frac{(2 x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}}(+c) \text { oe }} \\ & 10=\frac{2}{6}(2(4)+1)^{\frac{3}{2}}+c \text { oe } \\ & y=\frac{(2 x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}}+c \text { seen and } c=1 \text { or } \\ & y=\frac{(2 x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}}+1 \text { isw } \\ & \int\left(\frac{1}{3}(2 x+1)^{\frac{3}{2}}+1\right) \mathrm{d} x=\frac{1}{15}(2 x+1)^{\frac{5}{2}}+x(+ \text { const }) \\ & {\left[\frac{1}{15}(2 x+1)^{\frac{5}{2}}+x\right]_{0}^{1.5}=} \\ & {\left[\frac{1}{15}(2(1.5)+1)^{\frac{5}{2}}+(1.5)\right]-\left[\frac{1}{15}(2(0)+1)^{\frac{5}{2}}+0\right]} \\ & \frac{107}{30} \mathrm{oe} \text { isw } \end{aligned}$	B2 M1 A1 B1 + B1 B1ft M1 A1	or B1 for $(2 x+1)^{\frac{1}{2}+1}$ for valid attempt to find c; condone slips e.g. omission of power or sign error must have $y=\ldots$; condone $\mathrm{f}(x)=\ldots$ B1 for $(2 x+1)^{\frac{3}{2}+1}$, B1 for $\frac{1}{15}(2 x+1)^{\frac{5}{2}}$ B1 ft their c from (i) provided $c \neq 0$ for a genuine attempt to find $F(1.5)$ $-\mathrm{F}(0)$ in an attempt to integrate their y; if their $\mathrm{F}(0)$ is 0 must see at least their $\mathrm{F}(1.5)-0$; condone $+c$ as long as their c is not numerical. if decimal 3.57 or more accurate e.g. 3.566

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	22

10 (i)	Taking logs of both sides $\log y=\log A+x \log b$	M1 A1	any base; must be an explicitly correct statement correct form; any base; no recovery from incorrect method steps
(ii)	b : awrt 3 to one sf isw or awrt 4 to one sf isw	B2	or M1 for $b=\mathrm{e}^{\text {their gradient }}$ soi; their gradient must be correctly evaluated as rise/run
	A : awrt 0.5 to one sf	B2	or B1 for $A=\mathrm{e}^{-0.6}$
			or $\mathbf{S C 1}$ for $A=\mathrm{e}^{-0.3}=0.7$ (giving an awrt 0.7)
(iii)	Evidence of graph used at $\ln y=5.4$ soi	M1	$\text { or } \frac{220}{\text { their } 0.5}=(\text { their } 4)^{x}$
			or $5.39 \ldots=$ their $(1.4) x+$ their -0.6
			$\begin{aligned} & \text { or } \\ & \ln (220)=x \ln (\text { their } 4)+\ln (\text { their } 0.5) \end{aligned}$
	awrt 4.4 to two sf	A1	

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	22

11 (i)	$\mathrm{f}(x)>3$ or $[\mathrm{f}(x) \in](3, \infty)$	B1	condone $y>3$
(ii)	$x+1=2^{y}$	M1	or $y+1=2^{x}$
	$\mathrm{f}^{-1}(x)=\log _{2}(x+1)$	A1	mark final answer or $\log _{2}(y+1)=x$ and
			$\mathrm{f}^{-1}(x)=\log _{2}(x+1)$
			or for $\mathrm{f}^{-1}(x)=\frac{\log (x+1)}{\log 2}$ (any base for this form)
	Domain $x>3$	B1ft	ft their range of f provided mathematically valid inequality or interval
	Range $\mathrm{f}^{-1}(x)>2$	B1	condone $\mathrm{f}(x)>2$ or $y>2$
(iii)	$2^{x}\left(2^{x}-1\right)$ oe isw	B1	e.g. $\left(2^{x}-1\right)^{2}+(2 x-1)$ or $2^{2 x}-2 \times 2^{x}+1+2^{x}-1$
	$2^{x}\left(2^{x}-1\right)=0$ leading to $2^{x}=0$, impossible oe	B1	or $2^{x}=0$ which is outside domain of gf
	$2^{x}=1 \Rightarrow x=0$	M1	$\begin{aligned} & \text { or } \\ & 2^{x}\left(2^{x}-1\right)=2^{2 x}-2^{x}=0 \\ & {\left[2^{2 x}=2^{x}\right] \Rightarrow x=0} \end{aligned}$
	0 is not in the domain (and so $\operatorname{gf}(x)=0$ has no solutions)	A1	

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	$\mathbf{2 2}$

12 (i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-18 x+24$ Solving their $3 x^{2}-18 x+24 \geqslant 0$ by factorising or quadratic formula or completing the square	B1 M1	attempt at differentiation resulting in quadratic expression with two terms correct; allow $=$ or \leqslant or $<$ or $>$ or $\geqslant 0$ omitted here.
(ii)	Critical values 2 and 4 $x \leqslant 2, x \geqslant 4$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\mathbf{A 0}$ if spurious attempt to combine; mark final answer
	Evaluating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=3$	M1	
	Use of $m_{1} m_{2}=-1$ to get $m_{\text {normal }}=-\frac{1}{\text { their }(-3)}$	M1	must be explicit statement of gradient of normal ; may be seen in equation
	$y=18$ soi	B1	
	$\begin{aligned} & y \text {-their } 18=\left(\text { their } \frac{1}{3}\right)(x-3) \text { or } \\ & y=\text { their } \frac{1}{3} x+c \text { and } c=\text { their } 17 \text { isw } \end{aligned}$	A1ft	ft their m provided a genuine attempt at m \qquad no ft if $m=$ their $m_{\text {tangent }}$
	$P(0,17)$ cao	B1	

