MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2014		0606	22
1	<u>(</u> 2+,	halise the denominator to get $\frac{\sqrt{5}^2(\sqrt{5}+1)}{5-1}$ or better	M1	or squaring to get better	t $\frac{(4+4\sqrt{5}+5)}{\sqrt{5}-1}$ or
		ing to get $\frac{4\sqrt{5}+5}{\sqrt{5}+1}$ or better <i>their</i> 4	M1	or rationalising the get $\frac{their(9+4\sqrt{5})(\sqrt{3})}{5}$	the denominator to $(\overline{5} + 1)$ or better
	$\frac{29}{4}$ +	$\frac{13}{4}\sqrt{5}$ oe isw	A1 + A1	$\frac{5-1}{5-1}$ correct simplification Allow $\frac{29+13\sqrt{5}}{4}$	ation
2		ectly eliminate y	M1	$-kx + 2 = 2x^2 - 9$	9x + 4 oe
		(k-9)x + 2[= 0]oe $b^2 - 4ac$ oe	A1 M1	condone $\dots = y$ p implies it should must be applied	ed to a 3 term sion containing k
		h <i>their</i> $(k-9=\pm 4)$ or s <i>their</i> $(k^2-18k+65)=0$	M1		$=\pm4$; condone an
	<i>k</i> = 5	and 13 cao	A1	mark final answe A0 if inequalities	er, do not isw; s for final answers

	Page	3	Mark Scheme		Syllabus	Paper	
			IGCSE – May/June 2014		0606	22	
3	(i)	3(-1) to d =	$a^3 - 14(-1)^2 - 7(-1) + d = 0$ with completion	B1	at least $-3 - 14 + 7 + d = 0$, d = 10; N.B. = 0 must be seen implied by = d or = -d, r be seen in following step. or convincingly showing $3(-1)^3 - 14(-1)^2 - 7(-1) + 10 =$ at least -3 - 14 + 7 + 10 = 0 or correct synthetic division at as far as -1 $3 - 14 - 7 - 10-3 - 17 - 103 - 17 - 10$		
	(ii)	$3x^2$ –	-17x + 10 isw or $a = 3, b = -17, c = 10$ isw	B2, 1, 0	-1 each error; must be seen or referenced in (ii) even if found in (i) or (iii)		
	(iii)	(x+1	(x-5)(3x-2)	M1	for factorising quadratic ft correct; condone omission of $(x + 1)$ or for ft correct use of formula or ft correct completing the square		
		-1, 5	$,\frac{2}{3}$	A1	If M0 then SC1 for all three roots stated without working or verified/found by trials		

	Page 4		Mark Scheme	Syllabus Paper		
			IGCSE – May/June 2014		0606 22	
			. 2			
4	(i)	12 x	$\left(-\frac{1}{4}\right)^{2} + \frac{17}{4}$ isw	B3 , 2, 1,0	one mark for each of <i>p</i> , <i>q</i> , <i>r</i> correct in a correctly formatted expression; allow correct equivalent values;	
					If B0 then SC2 for $12\left(x - \frac{1}{4}\right) + \frac{17}{4}$ or	
					SC1 for correct 3 values seen in	
					incorrect format e.g.	
					$12\left(x-\frac{1}{4}x\right)+\frac{17}{4}$ or	
					$12\left(x^2 - \frac{1}{4}\right) + \frac{17}{4}$	
					or for a correct completed square form of the original expression in a different but correct format. e.g.	
					$3\left(2x - \frac{1}{2}\right)^2 + \frac{17}{4}$	
	(ii)	their	$\frac{4}{17}$ or <i>their</i> 0.235	B1ft	strict ft ; <i>their</i> $\frac{4}{17}$ must be a proper fraction or decimal rounded to 3sig	
					figs or more or truncated to 4 figs or more	
		their	$x = \frac{1}{4}$ oe	B1ft	strict ft ; <i>x</i> must be correctly attributed	
5	(i)	1-20	$0x + 160x^2$	B2, 1, 0	-1 each error	
					if B0 then M1 for 3 correct terms seen; may be unsimplified e.g.	
					1, $5(-4x)$, $\frac{5\times 4}{2}(-4x)^2$	
	(ii)	a+(i	<i>heir</i> $-20) = -23$ soi	M1	condone sign errors only; must be <i>their</i> –20 from (i)	
		<i>a</i> = -3		A1	validly obtained	
		b+(t)	heir - 20)a + (their 160) = 222 soi	M1	condone sign errors only ; must be their -20 and their 160 from (i) as their a if used	
		<i>b</i> = 2		A1	validly obtained	

	Page	5	Mark Scheme		Syllabus	Paper	
			IGCSE – May/June 2014	0606	22		
				1	1		
6	(a) (i)	1		B1			
	(ii)		1 or –2	B1 + B1	as final answers		
	(b)	$\frac{\log_3}{\log_3}$	$\frac{5}{a}$ seen or implied	B1*	may be implied by $2\log_3 15 - \log_3 5$	•	
		$2\log_3 15 = \log_3 15^2$ seen or implied		B1			
		log ₃]	$15^2 - \log_3 5 = \log_3 \left(\frac{15^2}{5}\right)$	B1dep*	not from wrong v	working	
		log ₃	45 cao	B1	must be 45 not e.	5	
					with no wrong w	orking seen	
7	(i)	$x^4(3\epsilon)$	$(e^{3x}) + 4x^3 e^{3x}$ isw	B1 + B1	each term of the sum correct; n be a sum of two terms		
	(ii)	$\frac{1}{2+c}$	$\frac{1}{\cos x} \times (-\sin x)$ isw	B2	or B1 for $\frac{1}{2 + \cos x} \times (k \pm \sin x)$		
	(iii)	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{s}$	$ in x) = \cos x \sin x $	B1	and k a constant		
		<u>u</u> n	$(+\sqrt{x}) = \frac{1}{2} x^{-\frac{1}{2}}$ soi	B1			
			$\frac{\sqrt{x}}{their\cos x - \left(their\frac{1}{2}x^{-\frac{1}{2}}\right)\sin x}{\left(1 + \sqrt{x}\right)^2}$ isw	B1ft	for correct form a their $\cos x$ and the	of quotient rule ft heir $\frac{1}{2}x^{-\frac{1}{2}}$;	
					allow correct use chain rules to obt $\sin x \left(-\left(1 + \sqrt{x}\right)^{-1} \right)$	tain	
					$\cos x \left(1 + \sqrt{x}\right)^{-1} $,	

	Page		Syllabus	Paper	
		IGCSE – May/June 2014	0606	22	
8		Substitution of either $x - 5$ or $y + 5$ into equation of curve and brackets expandedM1		condone one sign error in either equation of curve or expansion of brackets; condone omission of = 0, BUT $x - 5$ or $y + 5$ must be correct	
		$2x^2 - 8x - 10 = 0$ or $2y^2 + 12y = 0$ obtained	A1		
		Solving their quadratic	M1	dep on a valid sub	ostitution attempt
		(−1, −6) oe and (5, 0) oe isw	A1*+A1*	or A1 for correct coordinates or concordinates	-
		$\sqrt{72}$ or $6\sqrt{2}$ cao isw	B1dep*		
9	(i)	$[y =]\frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}}(+c) \text{ oe}$	B2	or B1 for $(2x+1)$	1 <u>+</u> +1
		$10 = \frac{2}{6} \left(2(4) + 1 \right)^{\frac{3}{2}} + c \text{ oe}$	M1	-	to find <i>c</i> ; condone n of power or sign
		$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + c$ seen and $c = 1$ or	A1	must have $y = \dots$ $f(x) = \dots$; condone
	(ii)	$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + 1$ isw			
		$\int \left(\frac{1}{3}(2x+1)^{\frac{3}{2}}+1\right) dx = \frac{1}{15}(2x+1)^{\frac{5}{2}} + x(+const)$	B1 + B1	B1 for $(2x+1)^{\frac{3}{2}+1}$,
				B1 for $\frac{1}{15}(2x+1)$	$\frac{5}{2}$
		$\left[\frac{1}{15}(2x+1)^{\frac{5}{2}}+x\right]_{0}^{1.5} =$	B1ft	B1 ft <i>their</i> c from $c \neq 0$	(i) provided
		$\left[\frac{1}{15}(2(1.5)+1)^{\frac{5}{2}}+(1.5)\right] - \left[\frac{1}{15}(2(0)+1)^{\frac{5}{2}}+0\right]$	M1	for a genuine atter – $F(0)$ in an attern <i>their y</i> ; if their $F(0)$ least their $F(1.5)$ – as long as their c	1. In the probability of the pr
		$\frac{107}{30}$ oe isw	A1	if decimal 3.57 or e.g. 3.566	more accurate

Pag	е 7	Mark Scheme	Syllabus	Paper		
		IGCSE – May/June 2014		0606	22	
10 (i)	Takii	Taking logs of both sides M1		any base; must be an explicitly correct statement		
	log y	$p = \log A + x \log b$	A1	correct form; any	t form; any base; no recovery ncorrect method steps	
(ii)	<i>b</i> : aw	<i>b</i> : awrt 3 to one sf isw or awrt 4 to one sf isw		or M1 for $b = e^{t}$ their gradient mu evaluated as rise/	st be correctly	
	A: aw	vrt 0.5 to one sf	B2	or B1 for $A = e^{-C}$	9.6	
				or SC1 for $A = e$ an awrt 0.7)	$^{-0.3} = 0.7$ (giving	
(iii)	Evid	ence of graph used at $\ln y = 5.4$ soi	M1	or $\frac{220}{their 0.5} = (the$	eir4) ^x	
				or 5.39= <i>their</i> (1.4)x + their - 0.6	
				or $\ln(220) = x \ln(the$	$reir4) + \ln(their0.5)$	
	awrt	4.4 to two sf	A1			

Page	8	Mark Scheme				Paper			
		IGCSE – May/June 2014			0606	22			
11 (i)	f(x) > 3 or	$[f(x)\in](3,\infty)$		B1	condone $y > 3$				
(ii)	$x + 1 = 2^{y}$			M1	or $y + 1 = 2^x$				
	$f^{-1}(x) = \log x$	$g_2(x+1)$		A1	mark final answe				
					or $\log_2(y+1) = x$				
					$f^{-1}(x) = \log_2(x + $	- 1)			
					or for $f^{-1}(x) = \frac{lc}{dx}$	$\frac{\log(x+1)}{\log 2}$ (any base			
					for this form)	C			
	Domain $x > 3$			B1ft	ft their range of mathematically winterval	f provided valid inequality or			
	Range f ⁻¹ (.	(x) > 2		B 1	condone $f(x) > 2$	or $y > 2$			
(iii)	$2^{x}(2^{x}-1)$ oe isw			B 1	e.g. $(2^x - 1)^2 + (2x - 1)$				
					or $2^{2x} - 2 \times 2^{x} +$	$1 + 2^{x} - 1$			
	$2^{x}(2^{x}-1) =$	0 leading to $2^x = 0$, impossible oe	B1	or $2^x = 0$ which of gf	is outside domain			
	$2^x = 1 \Longrightarrow x$	= 0		M1	or $2^{x}(2^{x}-1) = 2^{2x} - 1$	$-2^{x}=0$			
					$\begin{bmatrix} 2^{x}(2^{x}-1) = 2^{2x} \\ 2^{2x} = 2^{x} \end{bmatrix} \Rightarrow x =$	= 0			
	0 is not in th solutions)	ne domain (and so gf	f(x) = 0 has no	A1					

Page 9		Mark Scheme		Syllabus	Paper	
		IGCSE – May/June 2014		0606	22	
	dy					
	un	$3x^2 - 18x + 24$	B 1			
		ng their $3x^2 - 18x + 24 \ge 0$	M1	attempt at differ	ntiation nagulting	
	by factorising or quadratic formula or completing the square			attempt at differentiation resulting in quadratic expression with two terms correct; allow = or \leq or $<$ or $>$ or \geq 0 omitted here.		
	Critic	al values 2 and 4	A1			
	$x \leq 2$	$, x \ge 4$	A1	A0 if spurious attempt to comb mark final answer		
(ii)	Evaluating their $\frac{dy}{dx}$ at $x = 3$		M1			
	Use o	f $m_1m_2 = -1$ to get $m_{normal} = -\frac{1}{their(-3)}$	M1	must be explicit gradient of norm equation	statement of al; may be seen in	
-	<i>y</i> = 18	3 soi	B 1			
	y - th	their 18 = $\left(their \frac{1}{3}\right)(x-3)$ or				
	y = th	$heir \frac{1}{3}x + c$ and $c = their 17$ isw	A1ft	ft <i>their</i> m provid attempt at m_{normal}		
				$m = their m_{tangent}$	t	
	<i>P</i> (0, 1	7) cao	B 1			