MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

(i) (ii) (iii)		$\mathrm{B} 3,2,1,0$ B1ft B1ft	2 correctly placed in Venn diagram; 1,3,4, 6 correctly placed; $12,8,0,7,9,10$ correctly placed; 11,5 correctly placed correct or correct ft their (i), provided non-zero correct or correct ft their (i), provided not the empty set
$2 \begin{array}{cc}\text { (i) } \\ & \\ & \\ & \text { (ii) } \\ \\ & \\ \text { (iii) }\end{array}$	$[\mathbf{P}=]\left(\begin{array}{lll} 60 & 70 & 58 \\ 50 & 52 & 34 \end{array}\right) \text { and }[\mathbf{Q}=]\left(\begin{array}{ll} 120 & 300 \end{array}\right)$ $\left(\begin{array}{lll}22200 & 24000 & 17160\end{array}\right)$ The total (amount of revenue) from all (three) flights. oe	B2 B2 	or $[\mathbf{P}=]\left(\begin{array}{lll}50 & 52 & 34 \\ 60 & 70 & 58\end{array}\right)$ and $[\mathbf{Q}=]\left(\begin{array}{ll} 300 & 120 \end{array}\right)$ or B1 if one error may be written as an unevaluated product; B0 if choice of \mathbf{P} and \mathbf{Q} offered must have brackets and must not have commas; must be a 1 by 3 matrix; must be from correct product; working may be seen in (i) or B1 for any two elements correct do not accept, e.g. The total amount from each flight; must be a comment not just a figure; must not contain a contradiction

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

3 (i)	$\begin{aligned} & \frac{(36+15 \sqrt{5})}{(6+3 \sqrt{5})} \times \frac{(6-3 \sqrt{5})}{(6-3 \sqrt{5})} \text { oe } \\ & \frac{216+90 \sqrt{5}-108 \sqrt{5}-225}{-9} \\ & 1+2 \sqrt{5} \text { cao } \end{aligned}$ Alternative method: $\begin{aligned} & 36+15 \sqrt{5}=(6 a+15 b)+(3 a+6 b) \sqrt{5} \\ & 6 a+15 b=36 \\ & 3 a+6 b=15 \\ & a=1 \text { and } b=2 \\ & {\left[A C^{2}=(6+3 \sqrt{5})^{2}+\text { their }(1+2 \sqrt{5})^{2}\right]} \\ & =36+36 \sqrt{5}+45+\text { their }(1+4 \sqrt{5}+20) \\ & 102+40 \sqrt{5} \text { cao } \end{aligned}$	M1 DM1 A1 M1 DM1 A1 M1 A1	or $\frac{(12+5 \sqrt{5})}{(2+\sqrt{5})} \times \frac{(2-\sqrt{5})}{2-\sqrt{5}}$ oe or $\frac{24+10 \sqrt{5}-12 \sqrt{5}-25}{-1}$ or $-(24+10 \sqrt{5})-12 \sqrt{5}-25$ allow $a=1$ and $b=2$ or $1+2 \sqrt{5}$ correct or correct ft expansions, using Pythagoras with $(6+3 \sqrt{5})$ and their $B C$ ignore attempts to square root after correct answer seen
4 (i)	$\cos (x)=\frac{2}{3}$ oe soi $48.189 \ldots{ }^{\circ}$ or $131.810 \ldots{ }^{\circ}$ or $0.8410 \ldots$ rad or $2.3(00 \ldots)$ rad oe isw with reference axis indicated by comment, e.g. "to the bank" or "upstream", etc. or clearly marked on a diagram	M1 A1	Alternatively $\sin (y)=\frac{2}{3}$ oe soi 41.810... ${ }^{\circ}$ or $0.7297 \ldots$ or $0.73(0)$ rad oe isw with reference axis indicated by comment, e.g. "to the perpendicular with the bank", etc. or clearly marked on a diagram If M0 then SC 1 for an unsupported answer of $138.189 \ldots{ }^{\circ}$ or $2.4118 \ldots \mathrm{rad}$ or $318.189 \ldots{ }^{\circ}$ or $5.5534 \ldots$ rad with reference axis indicated by comment, e.g. "on a bearing of" or "from North" or clearly marked on a diagram

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

\begin{tabular}{|c|c|c|c|}
\hline (ii) \& Speed $=\sqrt{9-4}(=\sqrt{5})$ or $3 \sin 48.2$ or $2 \tan 48.2$ or $3 \cos 41.8$ or $\frac{2}{\tan 41.8}$ or $\sqrt{2^{2}+3^{2}-2 \times 2 \times 3 \cos 48.2}$ oe or $2.236(0 \ldots)$ rot to 4 or more figs or 2.24 [$\mathrm{m} / \mathrm{s}]$ soi
$$
\begin{aligned}
& \text { time }=\frac{80}{\text { their } \sqrt{5}} \text { oe } \\
& 35.66 \text { to } 35.8 \text { (seconds) oe }
\end{aligned}
$$ \& B1

M1

A1 \& | $\text { Or Distance }=\frac{80}{\sin 48.2}=107 .(33 \ldots)$ |
| :--- |
| oe soi $\text { time }=\frac{\text { their } 107.33 \ldots}{3}$ |
| ignore subsequent rounding or attempted conversion to, e.g. minutes but A0 if answer spoiled by continuation of method |
| if no working, so B 0 M 0 , then allow B 3 for an answer 35.66 to 35.8 oe |

\hline 5 \& | Substitution of either $4-x$ or $4-y$ into equation of curve and brackets expanded $12 x^{2}-52 x+48[=0]$ |
| :--- |
| or $12 y^{2}-44 y+32[=0]$ oe |
| Solve their 3-term quadratic $x=\frac{4}{3}$ and 3 isw |
| $y=\frac{8}{3}$ and 1 isw | \& M1

A1

M1
A1

A1 \& | condone one sign error or slip in either equation of curve or expansion of brackets; condone omission of $=0$, BUT $4-x$ or $4-y$ must be correct |
| :--- |
| dep on a valid substitution attempt or $x=\frac{4}{3} \quad y=\frac{8}{3}$ not from wrong working or $x=3 \quad y=1$ not from wrong working |
| if no working, allow full marks for fully correct answer only. |

\hline 6 (a) \& | $(x-2) \log 6=\log \left(\frac{1}{4}\right)$ oe or $\log _{6}\left(\frac{1}{4}\right)=x-2$ oe |
| :--- |
| 1.23 or $1.226(29 \ldots)$ rot to 4 or more figures isw | \& M1

A1 \& or $x \log 6=\log \left(\frac{36}{4}\right)$ oe or $x \log 6-\log 36=\log 1-\log 4$ oe correct answer or 1.22 implies M1

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

(b)	Method 1 $\begin{aligned} & \log \left(\frac{8 \times 2 y^{2} \times 16 y}{64 y}\right)=\log 4^{2} \text { oe } \\ & y=2 \end{aligned}$ Method 2 $\begin{array}{r} \log 2+2 \log y+3 \log 2+4 \log 2+\log y- \\ 6 \log 2-\log y=4 \log 2 \end{array}$ $y=2$	B3 B1 B3,2,1,0 B1	or B2 if at most one error or omitted step or B1 if at most two errors or omitted steps not from wrong working LHS terms $\log 2 y^{2}=\log 2+2 \log y ;$ $\log 8=3 \log 2$; $\log 16 y=4 \log 2+\log y ;$ $-\log 64 y=-6 \log 2-\log y$; RHS term $2 \log 4=4 \log 2$ not from wrong working
7	$\begin{aligned} & \frac{n(n-1)(n-2)(n-3)\left(2^{4}\right)}{4 \times 3 \times 2 \times 1}=10 \frac{n(n-1)\left(2^{2}\right)}{2 \times 1} \\ & \text { or better } \end{aligned}$	M3 A1 M1 A1	condone omitting the factor of n and/or $n-1$; must have dealt with factorials M2 if one slip/omission or M1 if two slips/omissions or B1 for $\frac{n(n-1)}{2}(2)^{2}\left[x^{2}\right]$ seen and $\text { B1 for } \frac{n(n-1)(n-2)(n-3)}{24}(2)^{4}\left[x^{4}\right]$ seen equivalent must be 3 -terms, e.g. $n^{n^{2}}-5 n=24$ or any valid method of solution for their 3 -term quadratic A0 if -3 also given as a final solution, i.e. not discarded If zero scored, allow SC1 for $n=8$ unsupported or without correct method

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

9 (i)	$10=2 m+4$ soi	M1	or $[m=] \frac{10-4}{2-0}$ oe soi
	$m=3$	A1	
(ii)	1	B1	
(iii)	$\frac{10-y_{R}}{2--1}=1$ oe soi	M1	or $y=x+8$ oe
	$(-1,7)$ or $x=-1$ and $y=7$	A1	if $y=7$ only stated, provided that $x=-1$ is soi in working allow both marks if M0 then B 1 for $y=7$ only with no working
(iv)	Use of $m_{1} m_{2}=-1$ with their m from (i) $y-10=\left(\text { their }-\frac{1}{3}\right)(x-2)$	M1 A1	may be implied by perpendicular gradient seen in equation or $\left(\right.$ their $\left.-\frac{1}{3}\right) x+c$ and
	$3 y+x=32 \text { isw }$	A1	$10=\left(\text { their }-\frac{1}{3}\right) 2+c$ allow for correct equation with integer coefficients in any simplified form
(v)	$\left(\frac{1}{2}\right.$, their $\left.\frac{11}{2}\right)$ oe isw	B1,B1ft	ft their y_{Q}
			or M1 for $\left(\frac{2-1}{2}, \frac{10+1}{2}\right)$ seen
(vi)	4.5 oe cao	B2	not from wrong working
			or M1 for any correct method with correct coordinates
10 (a)		B2,1,0	correct sinusoidal/reflected sinusoidal shape, all above x-axis with intent to have all maximum points of equal height;
			2 maximum points of intended equal height only over 0 to 360 ;
			all max points clearly at $y=1$;
			cusp at 180

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

(b)(i) (ii) (iii) (iv)	$[\operatorname{hg}(x)=] \frac{\mathrm{e}^{\ln (4 x-3)}+3}{4}$ fully correct and completion to $[\operatorname{hg}(x)=] x$ $\begin{aligned} & x \geqslant 0 \text { or }[0, \infty) \\ & y \geqslant 1 \text { or }[1, \infty) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B2,1,0 } \\ \text { B1 } \\ \text { B1 } \end{gathered}$	Alternative method $y=\ln (4 x-3)$ and change of subject to x fully correct and comment that $\mathrm{h}(x)=\mathrm{g}^{-1}(x)$ oe correct shape; 1 marked on the y-axis or $(0,1)$ stated close by; curve with positive gradient in first quadrant only not domain ≥ 0 or $\mathrm{h}(x) \geqslant 1, \mathrm{~h} \geqslant 1$ etc.
11 (i)	$\frac{8-h}{8}$ or $8: 8-h$ soi $\frac{8-h}{8} \times 4$ oe $h\left(\frac{8-h}{8} \times 4\right)^{2}$ oe expand and simplify to $\frac{h^{3}}{4}-4 h^{2}+16 h \mathbf{A G}$ $\frac{3}{4} h^{2}-8 h+16$ oe their $\left(\frac{3}{4} h^{2}-8 h+16\right)=0$ and attempt to solve $\frac{8}{3}$ oe only	M1 A1 M1 A1 B1 B1 M1 A2	or $\frac{8}{8-h}$ or $8-h: 8$ soi or $4 \div \frac{8}{8-h}$ oe h must be in the numerator of the expression for this mark; must be a 3-term quadratic; must be an attempt at a derivative or A1 for $h=\frac{8}{3}$ and 8 allow 2.67 or $2.66(6 \ldots)$ rot to 4 or more figs for $\frac{8}{3}$

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	22

