MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE– October/November 2009	0606	01

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	e 3 Mark Scheme: Teachers' version		Paper
	IGCSE– October/November 2009	0606	01

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Teachers			Syllabus	Paper
	IGCSE– October/November 20				0606	01
	2 2	2				
1		$+7a^2 + 16 = 0$	M1	M1 for use of $x = a$ and equated to $x = a$		
	leading to	$a^3 = -8, a = -2$	A1	maybe implied		
	$(1)^3$	$(1)^{2}$	[2]			
	(ii) $2\left(-\frac{1}{2}\right)$	$-7\left(-\frac{1}{2}\right)^2 - 14\left(-\frac{1}{2}\right) + 16$	M1	M1 for substitution of $x = -\frac{1}{2}$ into		
	(2)					2
	= 21		A1	expressi	on or $f(x)$	
	- 21		[2]			
			[-]			
2	(i)	(ii)	B1, B1		each matrix, mu	st be in correct
	$\begin{pmatrix} 6 & 3 & 1 \end{pmatrix}$	2)(5)(43)	[0]	order		
	3 2 4		[2]			
	2 5 5	$ \begin{pmatrix} 2 \\ 3 \\ 3 \\ 6 \\ 2 \\ 7 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 43 \\ 32 \\ 35 \\ 22 \\ 1 \end{pmatrix} = \begin{pmatrix} 43 \\ 32 \\ 35 \\ 22 \\ 1 \end{pmatrix} $	B2, 1, 0	-1 for each -1	ach error	
	$(1 \ 2 \ 2$	2 7 1 22	[2]			
	`					
3	$4(2k+1)^2 = 4(2k+1)^2$	(k+2)	M1		use of $b^2 - 4ac'$	
	$4k^2 + 3k - 1 =$		A1	Correct quadratic expression		
	leading to $k =$	$\frac{1}{4}, -1$	M1	M1 for correct attempt at solution		
		4	A1	A1 for b	ooth values	
			[4]			
4	$(13 - 3y)^2 + 3y$	$v^2 = 43$	M1	M1 for e	eliminating one va	ariable
	$(\text{or } x^2 + \frac{(13 - 3)^2}{3})$	$(x)^2$			C	
	$(or x^2 + \frac{3}{3})$	= = 43)				
	$6(2y^2 - 13y + 2)$		A1	A1 for c	orrect quadratic	
	$(or 2(2x^2 - 13x))$					
	(2y-7)(y-3) (or $(2x-5)(x-3)$		DM1	DM1 for correct attempt at solving quadratic		
				quadratic		
	$y = 3 \text{ or } \frac{7}{2} \left(x = 1 \right)^{1/2}$	$=\frac{1}{2}$ or 4	A1,A1	A1 for e	ach correct pair	
	- \					
	(or $x = 4$ or $\frac{5}{2}$	$\left(y = \frac{1}{2} \text{ or } 3 \right)$				
	2	× - /	[5]			
	(_)?	()2				
5	(i) $(3+\sqrt{2})^2$	$+\left(3-\sqrt{2}\right)^2=22$	M1		use of Pythagoras	
	_	_		Use of d	lecimals M1, A0	
	$AC = \sqrt{2}$	2	A1			
		_	[2]			
	(ii) $\tan A = \frac{3}{3}$	$-\sqrt{2}$	M1	M1 for a	correct ratio	
	3	$+\sqrt{2}$				
	(
	$(3-\sqrt{2})$	$\frac{3-\sqrt{2}}{3-\sqrt{2}} = \frac{11-6\sqrt{2}}{7}$	M1, A1	M1 for 1	ationalising 2 terr	n denominator
	$\left(3+\sqrt{2}\right)$	$3-\sqrt{2}$) 7				
	. , , , , , , , , , , , , , , , , , , ,		[3]			

	Pa	ge 5		Mark Scheme: Teachers' version			Syllabus Paper		
			IGCSE– October/November 2009				0606	01	
6		$3x^2 - 10x$ $(3x+2)(x)$	(-4) = 0	M1		M1 for a	ttempt to solve c	quadratic	
		critical va	lues $-\frac{2}{3}$, 4	A1		A1 for c	ritical values		
		$A = \{x : -$	$\frac{2}{3} \le x \le 4\}$	√A1	[3]	Follow through on their critical values.			
	(ii)	$B = \{x : x \\ A \cap B = \{x \in A \} $	$\geq 3 \}$ x: 3 \le x \le 4 }	B1 B1	[2]	B1 for values of <i>x</i> that define <i>B</i> . B1 (beware of fortuitous answers)			
7	(i)	$^{13}C_8 = 128$	37	M1,	A1 [2]	M1 for c	correct C notation	1	
	(ii)	6 teachers	4, 1 student : 6 4, 2 students ${}^{7}C_{6} \times {}^{6}C_{2}$: 105 4, 3 students ${}^{7}C_{5} \times {}^{6}C_{3}$: 420	B1 B1 B1 B1	[4]				
8	(i)	When $t =$	0, <i>N</i> = 1000	B1	[1]				
	(ii)	$\frac{\mathrm{d}N}{\mathrm{d}t} = -1$	$000ke^{-kt}$	M1		M1 for d	lifferentiation		
		when $t = 0$	0, $\frac{\mathrm{d}N}{\mathrm{d}t} = -20$ leading to	DM	l	DM1 for	use of $\frac{\mathrm{d}N}{\mathrm{d}t} = \pm \frac{1}{2}$	20	
		$k = \frac{1}{50}$		A1	[3]				
	. ,	500 = 100		M1		M1 for using ha	-	rmulate equation	
		$t = -50 \ln \frac{1}{2}$	$\frac{1}{2}$ leading to 34.7 mins	M1 A1	[3]		of fortuitous ans		
9	(i)	20 × -2(1	$(-2x)^{19}$	B1,E	81 [2]	B1 for 20 B1 for -2	0 and $(1 - 2x)^{19}$ 2 provided $(1 - 2x)^{19}$	$(2x)^{19}$ is present	
	(ii)	$x^2\frac{1}{2} + 2x$	$\ln x$	M1 B1		1	-	entiate a product.	
		ISW		Al	[3]	B1 for $\frac{1}{x}$ A1 all of	her terms correc	t	
	(iii)	$\frac{x(2 \sec^2)}{\text{ISW}}$	$\frac{2x+1))-\tan(2x+1)}{x^2}$	M1 B1 A1	[3]	B1 for d	ttempt to differe ifferentiation of her terms correc		

	Ра	ge 6 Mark Scheme: Teach	Syllabus	Paper			
		IGCSE– October/Nov	IGCSE– October/November 2009				
10	(i)	$\frac{dy}{dx} = 9x^2 - 4x + 2$ at P grad = 7 tangent y - 3 = 7(x - 1)	M1 A1 DM1 A1 [4]	M1 for differentiation A1 for gradient = 7 and $y = 3$ DM1 for attempt to find tangent equation M1 for equating tangent and cur equations B1 for realising $(x - 1)$ is a factor DM1 attempt to factorise cubic DM1 for attempt to solve quadratic A1 for both			
	(ii)	at Q, $7x - 4 = 3x^3 - 2x^2 + 2x$ leading to $3x^3 - 2x^2 - 5x + 4 = 0$ $(x - 1)(3x^2 + x - 4) - 0$ (x - 1)(3x + 4)(x - 1) = 0 leading to $x = -\frac{4}{3}$, $y = -\frac{40}{3}$	M1 B1 DM1 DM1 A1 [5]				
11	(a)	$\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$ $= \frac{1}{\cos \theta \sin \theta}$ $= \cos \theta \sec \theta$	B1 B1 B1 [3]	B1 for u B1 for si	ttempt to obtain of se of an appropria implification follows for alterna	te identity	
(b)	(i)	$\tan x = 3\sin x$ $\frac{\sin x}{\cos x} = 3\sin x$ $\sin x - 3\sin x \cos x = 0$ leading to $\cos x = \frac{1}{3}$, $\sin x = 0$ $x = 70.5^{\circ}$, 289.5° and $x = 180^{\circ}$	M1 A1√A1 B1 [4]	attempt	to solve their $x = 70.5^{\circ}$	$\frac{n x}{\cos x}$ and correct	
	(ii)	$2 \cot^{2} y + 3 \csc y = 0$ $2(\csc^{2} y - 1) + 3 \csc y = 0$ $2 \csc^{2} y + 3 \csc y - 2 = 0$ $(2 \csc y - 1)(\csc y + 2) = 0$ leading to sin $y = -\frac{1}{2}, y = \frac{7\pi}{6}, \frac{11\pi}{6}$ allow $y = 3.67, 5.76$	M1 M1 M1 A1,A1 [5]	M1 for a M1 for d	use of correct iden attempt to solve qu lealing with cosect follows for alterna	adratic /cot	

Paç	Page 7 Mark Scheme: Teachers' version				Paper			
	IGCSE– October/Novem				0606	01		
(i)	12 EITHER (i) $\pi r^2 h = 1000$, leading to $h = \frac{1000}{\pi r^2}$			M1 for a	M1 for attempt to use volume			
(ii) $A = 2\pi r h + 2\pi r^2$ leading to given answer $A = 2\pi r^2 + \frac{2000}{r}$					B1 for $A = 2\pi r h + 2\pi r^2$ GIVEN ANSWER			
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 4\pi r$ when $\frac{\mathrm{d}A}{\mathrm{d}r}$	$-\frac{2000}{r^2} = 0, 4\pi r = \frac{2000}{r^2}$	[2] M1 A1 DM1	A1 all co	M1 for attempt to differentiate given A A1 all correct DM1 for solution = 0 M1 for second derivative method gradient method' A1 for minimum, must be from correct work			
	leading to	r = 5.42	A1 [4]	Divit io				
		$r + \frac{4000}{r^3}$ r = 5.42 so min value	M1 A1 B1	gradient A1 for				
12 OR (i)	$A_{\min} = 554$ $y = x + \cos(\theta)$	s 2 <i>x</i>	[3] M1	M1 for a	attempt to differen	tiate		
	$\frac{dy}{dx} = 1 - 2$ when $\frac{dy}{dx}$	$2 \sin 2x$ $= 0, \sin 2x = \frac{1}{2}$	A1 DM1	DM1 for	r setting to 0 and a	attempt to solve		
		$x = \frac{\pi}{12}, \frac{5\pi}{12}$	DM1 A1,A1 [6]			operations		
		$x + \cos 2x.dx$	M1 A1,A1	M1 for a	e			
	$= \left[\frac{x^{2}}{2} + \frac{1}{2}\sin 2x\right]_{\frac{\pi}{12}}^{\frac{12}{12}}$				ach term correct r correct use of lin	nits – must be in		
$=\frac{\pi^2}{12}$			A1 [5]	(Trig ter	ms cancel out)			