MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	21

| $\mathbf{1}$ (a) | | B1 | |
| :--- | :--- | :--- | :--- | :--- |

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	21

4 (i) (ii) (iii)	$\begin{aligned} & \mathrm{f}(37)=3 \text { or } \mathrm{gf}(x)=\frac{\sqrt{x-1}-3-2}{2(\sqrt{x-1}-3)-3} \\ & \operatorname{gf}(37)=\frac{3-2}{6-3}=\frac{1}{3} \\ & y=\sqrt{x-1}-3 \rightarrow(y+3)^{2}=x-1 \\ & (x+3)^{2}+1=\mathrm{f}^{-1}(x) \text { oe isw } \\ & y=\frac{x-2}{2 x-3} \\ & 2 x y-3 y=x-2 \rightarrow 2 x y-x=3 y-2 \\ & \frac{3 x-2}{2 x-1}=\mathrm{g}^{-1}(x) \text { oe } \end{aligned}$	B1 B1 M1 A1 M1 A1	Rearrange and square in any order Interchange x and y and complete Multiply and collect like terms Interchange and complete Mark final answer
$5 \quad$ (i) (ii) (iii) (iv)	$\begin{aligned} & B=900 \\ & B=500+400 \mathrm{e}^{2}=3455 \text { or } 3456 \text { or } 3460 \\ & \left(\frac{\mathrm{~d} B}{\mathrm{~d} t}=\right) 80 \mathrm{e}^{0.2 t} \\ & t=10 \rightarrow \frac{\mathrm{~d} B}{\mathrm{~d} t}=80 \mathrm{e}^{2}=591(/ \text { day }) \\ & 10000=500+400 \mathrm{e}^{0.2 t} \rightarrow \mathrm{e}^{0.2 t}=(23.75) \\ & 0.2 t=\ln 23.75 \\ & t=15.8(\text { days }) \end{aligned}$	B1 B1 B1 B1 M1 DM1 A1	3455.6 scores B0 awrt $\mathrm{e}^{0.2 t}=k$ take logs: $0.2 t=\ln k$ awrt

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	21

6 (i) (ii)	$\begin{aligned} & (x+2)^{2}+x^{2}=10 \\ & x^{2}+2 x-3=0 \rightarrow(x+3)(x-1)=0 \end{aligned}$ Points (1,3), $(-3,-1)$ isw or elimination of x leads to $y^{2}-2 y-3=0$, then as above $\begin{aligned} & m^{2} x^{2}+10 m x+25+x^{2}=10 \\ & \left(m^{2}+1\right) x^{2}+10 m x+15=0 \\ & b^{2}-4 a c=(0) \rightarrow 100 m^{2}-60\left(m^{2}+1\right)=0 \\ & m= \pm \sqrt{\frac{3}{2}} \text { oe isw } \end{aligned}$ Alternative solution: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x}{\sqrt{10-x^{2}}} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}$ Result: $y^{2}=x^{2}+5 y$ after inserted in $y=m x+5$ Attempt to solve with $x^{2}+y^{2}=10$ $\begin{aligned} & y=2, x= \pm \sqrt{6} \\ & m= \pm \frac{3}{\sqrt{6}} \text { oe } \end{aligned}$	B1 M1 A1 A1 B1 M1 A1 A1 B1 M1 A1 A1	3 term quadratic with attempt to solve both x or a pair both y or second pair attempt to use discriminant on three term quadratic. Allow unsimplified cao \pm is required allow unsimplified Eliminate x or y both
$7 \quad$ (i) (ii) (iii)	$\begin{aligned} & v=2 \cos t+1 \\ & 2 \cos t+1=0 \\ & t=\frac{2 \pi}{3} \text { or } 2.09 \\ & t=\frac{2 \pi}{3} \rightarrow x=2 \sin \left(\frac{2 \pi}{3}\right)+\frac{2 \pi}{3}=3.83 \mathrm{~m} \\ & a=-2 \sin t \\ & t=\frac{2 \pi}{3} a=-\sqrt{3}=-\frac{1.73}{4} \mathrm{~ms}^{-2} \end{aligned}$	B1 M1 A1 B1 B1ft DB1ft	mark final answer equate their v to zero (must be a differential) and attempt to solve to find an angle awrt awrt ft their $v\left(2^{\text {nd }}\right.$ differential) ft using their angle t in correct a awrt
8 (i) (ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(2+x^{2}\right) \times 2 x-x^{2} \times 2 x}{\left(2+x^{2}\right)^{2}}=\frac{4 x}{\left(2+x^{2}\right)^{2}} \\ & k=4 \\ & \int \frac{x}{\left(2+x^{2}\right)^{2}} \mathrm{~d} x=\frac{1}{4} \times \frac{x^{2}}{2+x^{2}}+(c) \text { isw } \end{aligned}$	M1 A1 A1 B1 B1	apply quotient or product rule unsimplified $k=4$ does not need to be specifically identified $\frac{1}{\text { their } k} \times$ original function

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	21

9	$(a+3 \sqrt{5})^{2}=a^{2}+3 \sqrt{5} a+3 \sqrt{5} a+45 \text { oe }$ Equate: $a^{2}+a+45=51$ and $6 a-b=0$ $(a+3)(a-2)=0$ $\begin{aligned} & a=-3,2 \\ & b=-18,12 \end{aligned}$	B1 B1 B1 M1 A1 A1	anywhere Attempt to solve three term quadratic with integer coefficients obtained by equating coeffs Both a s correct or one correct pair Both bs correct
10 (i) (ii)	$\begin{aligned} & \sec x \operatorname{cosec} x=\frac{1}{\cos x \sin x} \\ & \cot x=\frac{\cos x}{\sin x} \\ & \text { LHS }=\frac{1-\cos ^{2} x}{\cos x \sin x} \text { oe } \\ & =\frac{\sin ^{2} x}{\cos x \sin x}=\tan x \quad \text { AG } \\ & 3 \cot x-\cot x=\tan x \rightarrow 2 \cot x=\tan x \\ & \tan ^{2} x=2 \text { oe } \\ & x=54.7,125.3,234.7,305.3 \end{aligned}$	B1 B1 B1ft B1 M1 A1 A1 A1	anywhere anywhere correct addition of their terms use of identity and cancel equate and collect like terms, allow sign errors 2 values only 2 more values. awrt
11 (i) (ii) (iii)	$\begin{aligned} & \text { Area of sector }=\frac{1}{2} \times x^{2} \times 0.8\left(=0.4 x^{2} \mathrm{~cm}^{2}\right) \\ & S R=5 \sin 0.8(=3.59) \text { or } \\ & O R=5 \cos 0.8(=3.48) \end{aligned}$ Area of triangle $=$ $\begin{aligned} & \frac{1}{2} 5 \cos 0.8 \times 5 \sin 0.8=6.247 \mathrm{~cm}^{2} \\ & 0.08 x^{2}=6.247 \\ & x=8.837 \mathrm{~cm} \quad \mathrm{AG} \end{aligned}$ $\begin{aligned} & S Q=8.84-5(=3.84 \mathrm{~cm}) \\ & P R=8.84-5 \cos 0.8(=5.35 \text { or } 5.36 \mathrm{~cm}) \\ & P Q=8.84 \times 0.8(=7.07 \mathrm{~cm}) \end{aligned}$ Perimeter $=19.84$ to 19.86 cm or rounded to 19.8 or 19.9 Area $P Q S R=4 \times 6.247$ $=25 \mathrm{~cm}^{2}$	B1 B1 M1 A1 A1 B1 B1 B1 M1 A1	anywhere $S R$ may be seen in stated $\frac{1}{2} a b \sin C$ insert correct terms into correct area formulae two lengths from $S Q, P R, P Q$ awrt third length awrt sum 24.95 to 25

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	21

