MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Cambridge IGCSE – October/November 2014 0606 1 (i) f(2)=0 $\rightarrow 3(2)^3+8(2)^2-33(2)+p=0$ correct working to $p=10$ AG method for quadratic factor f(x) = (x-2)(3x^2+14x-5) M1 factorise or solve quadratic (ii) f(x) = (x-2)(3x-1)(x+5) M1 factorise or solve quadratic f(x)=0 $\rightarrow x=2, -5, \frac{1}{3}$ B1 (iii) $^{2}C_{4}=495$ B1 (iii) not K and B = $^{6}C_{2}\times^{4}C_{4}=15\times4=60$ B1 K and not B = $^{6}C_{1}\times^{4}C_{2}=6\times6=36$ B1 96 M1 A1 OR K and not B = $^{6}C_{1}\times^{4}C_{2}=15\times6=90$ B1 $210-90-24$ B1 M1 96 A1 M1 3 (i) C is (1, 6) B1 $210-90-24$ B1 B1 M1 $gendient of CD = \frac{15-6}{13-1} \left(=\frac{3}{-4}\right)$ B1 B1	Syllabu				Page 2
Correct working to $p = 10$ AG AI method for quadratic factor f(x) = (x-2)(3x^2+14x-5) AI (ii) f(x) = (x-2)(3x-1)(x+5) MI f(x) = 0 $x = 2, -5, \frac{1}{3}$ AI 2 (i) ${}^{12}C_{4} = 495$ BI (ii) ${}^{7}C_{2} \times {}^{5}C_{2} = 21 \times 10$ MI $= 210$ AI (iii) not K and B = ${}^{6}C_{2} \times {}^{4}C_{1} = 15 \times 4 = 60$ BI K and not B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ BI $60 + 36$ 96 MI 96 AI AI OR K and B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ BI Not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ BI 210 - 90 - 24 MI AI 96 AI MI 3 (i) C is $(1, 6) + (12, 9)$ BI $_{11}$ MI AI MI (ii) gradient of $CD = \frac{15 - 6}{13 - 1} \left(= \frac{3}{4} \right)$ BI gradient of $AB = \frac{10 - 2}{-2 - 4} \left(= \frac{8}{-6} = -\frac{4}{3} \right)$ BI	ember 2014 0606	Cambridge IGCSE – October/November 2014			
method for quadratic factor M1 $f(x) = (x-2)(3x^2+14x-5)$ M1 $f(x) = (x-2)(3x-1)(x+5)$ M1 $f(x) = 0 \rightarrow x=2, -5, \frac{1}{3}$ M1 2 (i) ${}^{12}C_4 = 495$ B1 (ii) ${}^{7}C_2 \times {}^5C_2 = 21 \times 10$ M1 $= 210$ A1 (iii) not K and B = ${}^{6}C_2 \times {}^{4}C_1 = 15 \times 4 = 60$ B1 K and not B = ${}^{6}C_1 \times {}^{4}C_2 = 6 \times 6 = 36$ B1 $60 + 36$ M1 96 A1 OR K and not B = ${}^{6}C_2 \times {}^{4}C_2 = 15 \times 6 = 90$ B1 $10 - 90 - 24$ B1 96 A1 3 (i) $C \operatorname{is}(1, 6)$ $D \operatorname{is}(1, 6) + (12, 9)$ $= (13, 15)$ A1 (ii) gradient of $CD = \frac{15 - 6}{13 - 1} \left(= \frac{3}{4} \right)$ B1 ft gradient of $AB = \frac{10 - 2}{-2 - 4} \left(= \frac{8}{-6} = -\frac{4}{3} \right)$ B1					1 (i)
(ii) $f(x) = (x-2)(3x-1)(x+5)$ $f(x)=0 \rightarrow x=2, -5, \frac{1}{3}$ 2 (i) ${}^{12}C_{4}=495$ (ii) ${}^{7}C_{2} {}^{x^{2}}C_{2}=21 \times 10$ =210 (iii) ${}^{7}C_{2} {}^{x^{2}}C_{2}=21 \times 10$ =210 (iii) not K and B = ${}^{6}C_{2} {}^{x^{4}}C_{1}=15 \times 4=60$ K and not B = ${}^{6}C_{1} {}^{x^{4}}C_{2}=6 \times 6=36$ 60 + 36 96 OR K and B = ${}^{6}C_{1} {}^{x^{4}}C_{1}=6 \times 4=24$ not K and not B = ${}^{6}C_{2} {}^{x^{4}}C_{2}=15 \times 6=90$ 210 - 90 - 24 96 3 (i) $C \text{ is } (1, 6)$ D is (1, 6) + (12, 9) = (13, 15) (ii) gradient of $CD = \frac{15-6}{13-1} \left(=\frac{3}{4}\right)$ gradient of $AB = \frac{10-2}{-2-4} \left(=\frac{8}{-6}=\frac{-4}{3}\right)$ B1 HI factorise or solve quadratic AB = 10-2 (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-			AG	e 1	
f(x)=0 $\rightarrow x=2, -5, \frac{1}{3}$ A1 2 (i) ${}^{12}C_{4}=495$ B1 (ii) ${}^{7}C_{2}^{5}C_{2}=21\times10$ M1 =210 A1 (iii) not K and B = ${}^{6}C_{2}^{4}C_{1}=15\times4=60$ B1 K and not B = ${}^{6}C_{1}^{4}C_{2}=6\times6=36$ B1 60 + 36 M1 96 A1 OR K and B = ${}^{6}C_{1}^{4}C_{2}=6\times4=24$ B1 not K and not B = ${}^{6}C_{2}^{4}C_{2}=15\times6=90$ B1 210 - 90 - 24 M1 96 A1 3 (i) C is (1, 6) D is (1, 6)+(12, 9) B1 = (13, 15) A1ft (ii) gradient of $CD = \frac{15-6}{13-1} \left(=\frac{3}{4}\right)$ B1ft gradient of $AB = \frac{10-2}{-2-4} \left(=\frac{8}{-6} = -\frac{4}{3}\right)$ B1	A1	A1		$f(x) = (x-2)(3x^2 + 14x - 5)$	
2 (i) ${}^{12}C_4 = 495$ (ii) ${}^{7}C_2 \times {}^{5}C_2 = 21 \times 10$ = 210 N11 (iii) not K and B = ${}^{6}C_2 \times {}^{4}C_1 = 15 \times 4 = 60$ K and not B = ${}^{6}C_1 \times {}^{4}C_2 = 6 \times 6 = 36$ 60 + 36 96 OR K and B = ${}^{6}C_1 \times {}^{4}C_1 = 6 \times 4 = 24$ not K and not B = ${}^{6}C_2 \times {}^{4}C_2 = 15 \times 6 = 90$ 210 - 90 - 24 96 3 (i) C is (1, 6) D is (1, 6) + (12, 9) = (13, 15) (ii) gradient of $CD = \frac{15 - 6}{13 - 1} \left(= \frac{3}{4} \right)$ gradient of $AB = \frac{10 - 2}{-2 - 4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$ B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	M1 factorise or solve quadra	M1			(ii)
(ii) ${}^{7}C_{2} \times {}^{5}C_{2} = 21 \times 10$ $= 210$ (iii) not K and B = ${}^{6}C_{2} \times {}^{4}C_{1} = 15 \times 4 = 60$ K and not B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ (i) K and not B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ (i) N1 (ii) OR K and B = ${}^{6}C_{1} \times {}^{4}C_{1} = 6 \times 4 = 24$ not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ (ii) C is (1, 6) D is (1, 6) + (12, 9) = (13, 15) (ii) gradient of $CD = \frac{15 - 6}{13 - 1} \left(= \frac{3}{4} \right)$ (iii) gradient of $AB = \frac{10 - 2}{-2 - 4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$ B1 (iv) C is (1, 6) (iv) C is (1,	A1	A1		$f(x)=0 \rightarrow x=2, \ -5, \ \frac{1}{3}$	
$\begin{array}{c ccccc} $	B1	B1		$^{12}C_{4} = 495$	2 (i)
(iii) not K and B = ${}^{6}C_{2} \times {}^{4}C_{1} = 15 \times 4 = 60$ K and not B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ 60 + 36 96 OR K and B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ M1 A1 OR K and B = ${}^{6}C_{1} \times {}^{4}C_{1} = 6 \times 4 = 24$ not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ 210 - 90 - 24 96 Since (1, 6) D is (1, 6) + (12, 9) = (13, 15) (ii) gradient of $CD = \frac{15 - 6}{13 - 1} \left(= \frac{3}{4} \right)$ gradient of $AB = \frac{10 - 2}{-2 - 4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$ B1 B1	M1	M1			(ii)
K and not $B = {}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ B1 $60 + 36$ 96 96 A1 OR K and $B = {}^{6}C_{1} \times {}^{4}C_{1} = 6 \times 4 = 24$ B1 not K and not $B = {}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ B1 $210 - 90 - 24$ M1 96 A1 3 (i) $C \text{ is } (1, 6)$ B1 p_{6} A1 (ii) gradient of $CD = \frac{15 - 6}{13 - 1} \left(= \frac{3}{4} \right)$ B1ft gradient of $AB = \frac{10 - 2}{-2 - 4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$ B1	A1	A1		=210	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(iii)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			= 36	1 2	
K and B = ${}^{6}C_{1} \times {}^{4}C_{1} = 6 \times 4 = 24$ B1 not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ B1 210 - 90 - 24 M1 96 A1 3 (i) C is (1, 6) D is (1, 6)+(12, 9) B1 = (13, 15) M1 (ii) gradient of $CD = \frac{15 - 6}{13 - 1} \left(= \frac{3}{4} \right)$ B1ft gradient of $AB = \frac{10 - 2}{-2 - 4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$ B1					
not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ B1 $210 - 90 - 24$ M1 96 A1 3 (i) C is (1, 6) D is (1, 6)+(12, 9) B1 $= (13, 15)$ M1 (ii) gradient of $CD = \frac{15-6}{13-1} \left(=\frac{3}{4}\right)$ B1ft gradient of $AB = \frac{10-2}{-2-4} \left(=\frac{8}{-6} = \frac{-4}{3}\right)$ B1	B1	B1			
96 A1 3 (i) $C \text{ is } (1, 6)$ $B1$ $D \text{ is } (1, 6) + (12, 9)$ $M1$ $= (13, 15)$ A1ft (ii) gradient of $CD = \frac{15-6}{13-1} \left(=\frac{3}{4}\right)$ B1ft gradient of $AB = \frac{10-2}{-2-4} \left(=\frac{8}{-6} = \frac{-4}{3}\right)$ B1	B1	B1	$5 \times 6 = 90$		
3 (i) $C \text{ is } (1, 6)$ D is (1, 6) + (12, 9) $= (13, 15)$ (ii) gradient of $CD = \frac{15-6}{13-1} \left(=\frac{3}{4}\right)$ gradient of $AB = \frac{10-2}{-2-4} \left(=\frac{8}{-6} = \frac{-4}{3}\right)$ B1				210-90-24	
(ii) $D \text{ is } (1, 6) + (12, 9) = (13, 15)$ (ii) $P \text{ gradient of } CD = \frac{15-6}{13-1} \left(= \frac{3}{4} \right)$ $P \text{ gradient of } CD = \frac{15-6}{13-1} \left(= \frac{3}{4} \right)$ $P \text{ gradient of } AB = \frac{10-2}{-2-4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$ B1	A1	A1		96	
(ii) $ \begin{array}{c} = (13, 15) \\ \text{gradient of } CD = \frac{15-6}{13-1} \left(= \frac{3}{4} \right) \\ \text{gradient of } AB = \frac{10-2}{-2-4} \left(= \frac{8}{-6} = \frac{-4}{3} \right) \\ \end{array} $					3 (i)
gradient of $AB = \frac{10-2}{-2-4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$ B1					
	B1ft	B1ft)	gradient of $CD = \frac{15-6}{13-1} \left(=\frac{3}{4}\right)$	(ii)
	B1	B1	$\frac{1}{6} = \frac{-4}{3}$	gradient of $AB = \frac{10-2}{-2-4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$	
$\frac{3}{4} \times \frac{-4}{3} = -1$ lines are perpendicular B1 correct completion wy	B1 correct completion	B1	licular	$\frac{3}{4} \times \frac{-4}{3} = -1$ lines are perpendicular	
(iii) area = $\frac{1}{2} \times AB \times CD = \frac{1}{2} \times 10 \times 15$ M1 good attempt at two relevant for $\frac{1}{2}$ base × height method	E I	M1	5	area = $\frac{1}{2} \times AB \times CD = \frac{1}{2} \times 10 \times 15$	(iii)
=75 or array method	-	A1			

Page 3	Mark Scheme				Paper
	Cambridge IGCSE – October/November 2014			0606	23
4 (i)	$2000 = 1000e^{a+b} \rightarrow a+b = \ln 2$	B1			
(ii)	$3297 = 1000e^{2a-b} \rightarrow 2a+b$ $= \ln 3.297 \text{oe}$	M1 A1	substitution of 2, 3297 and rearrange		
(iii)	Solve for one value $a = 0.5$ and $b = 0.193$ or 0.19	M1 A1			
(iv)	$n = 10 P = 1000e^{5.193} = \$180000.$	M1 A1			
5 (i)	$\overrightarrow{OX} = \mu \big(a + b \big)$	B 1			
(ii)	$\overrightarrow{RP} = b - 3a$ or $\overrightarrow{RX} = \lambda(b - 3a)$ oe $\overrightarrow{OX} = 3a + \lambda(b - 3a)$	B1 B1			
(iii)	$\overrightarrow{OX} = \overrightarrow{OX} \text{ and equate both coefficients}$ $\mu = 3 - 3\lambda \qquad \mu = \lambda$ $\mu = \lambda = 0.75$ $\frac{RX}{XP} = 3 \text{ or } 3:1$	M1 A1 A1ft	$\frac{\lambda}{1-\lambda}$		
6 (i)	m = 4 equation of line is $\frac{\ln y - 39}{3^x - 9} = \frac{39 - 19}{9 - 4}$ $\ln y = 4(3^x) + 3$	B1 M1 A1ft		nation of line their gradier	nt
(ii)	$x = 0.5 \rightarrow \ln y = 4\sqrt{3} + 3 = 9.928$ y = 20500	M1 A1	correct ex	pression for	lny
(iii)	Substitutes y and rearrange for 3^x Solve $3^x = 1.150$ x = 0.127	M1 M1 A1			

Page 4	Mark Scheme				Paper	
	Cambridge IGCSE – October/November 2014			0606	23	
7 (i)	$x = \frac{2}{y} + 1 \rightarrow y = \frac{2}{x - 1}$ $f^{-1}(x) = \frac{2}{x - 1}$	M1 A1	any valid method			
	$gf(x) = \left(\frac{2}{x} + 1\right)^2 + 2$	B2/1/0	-1 each error			
(iii)	$\operatorname{fg}(x) = \frac{2}{x^2 + 2} + 1$	B2/1/0	-1 each error			
(iv)	$\mathrm{ff}(x) = \frac{2}{\frac{2}{x}+1} + 1 = \frac{2x}{x+2} + 1$	M1	correct starting expression			
	$=\frac{3x+2}{x+2}$	A1	correct algebra to given answer			
	$\frac{3x+2}{x+2} = x \rightarrow x^2 - x - 2 = 0$	M1	form and solve 3 term quadratic			
	(x-2)(x+1) = 0 x = 2 only	A1				
. ,	$v = C + K \sin 2t \qquad C \neq 0$ $v = 5 + 6 \sin 2t \qquad a = 12 \cos 2t$	M1 A1 A1ft				
(ii)	$a=0 \rightarrow \cos 2t = 0$ and solve	M1	set $a = 0$ and solve for t			
	$t = \frac{\pi}{4}$ or 0.785 or 0.79	A1				
	$v = 5 + 6\sin\frac{\pi}{2} = 11$	A1ft	ft only or	n K		
(iii)	$v = 2 \rightarrow \sin 2t = -\frac{1}{2}$ and solve	M1	set $v = 2$ and solve for t			
	$t = \frac{7\pi}{12}$ or $1.83 - 1.84$ $a = 12\cos\frac{7\pi}{6} = -6\sqrt{3}$ or -10.4	A1				
	$a = 12\cos\frac{7\pi}{6} = -6\sqrt{3}$ or -10.4	A1				

Ра	ge 5	Mark Scheme			Syllabus	Paper		
		Cambridge IGCSE – October/November 2014			0606	23		
9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - \frac{1}{\left(x-2\right)^2}$	B1					
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \rightarrow (x-2)^2 = \frac{1}{4}$	M1	solve 3 term quadratic from				
		$(4x^2 - 16x + 15 = 0)$		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$				
		x = 2.5 or 1.5 y = 12 or 4	A1 A1	x values or 1 pair y values or 1 pair				
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\left(x-2\right)^{-3}$	M1	use $\frac{d^2 y}{dx^2}$ with solution from				
		$x = 2.5 \rightarrow \frac{d^2 y}{dx^2} > 0 \rightarrow \text{minimum}$	A1	$\frac{dy}{dx} = 0$ both identified www				
		$x = 1.5 \rightarrow \frac{d^2 y}{dx^2} < 0 \rightarrow \text{maximum}$				WWW		
	(ii)	$x=3 \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x}=3$	B 1					
		Use $m_1m_2 = -1$ for gradient normal from gradient tangent	M1	must use numerical values				
		Eqn of normal : $\frac{y-13}{x-3} = -\frac{1}{3}$	A1ft					
		Intersection of norm and curve $x = 1$		equation and attempt to simplify attempt to solve 3 term quadrati				
		$14 - \frac{x}{3} = 4x + \frac{1}{x - 2}$ $13x^2 - 68x + 87 = 0$	M1 DM1					
		$x = \frac{29}{13} \text{ or } 2.23$	A1	uttempt to		quudiule		
10	(i)	LHS = $\frac{1 + \cos x + 1 - \cos x}{(1 - \cos x)(1 + \cos x)}$	B1	correct fra	action			
		$=\frac{2}{1-\cos^2 x}$	B 1	correct ev	aluation			
		$=\frac{2}{\sin^2 x} = \text{RHS}$	B 1		$-\cos^2 x = \sin^2 x$			
	(ii)	$2\csc^2 x = 8$	M1	identity u	sed			
		$\sin^2 x = \frac{1}{4}$ $\sin x = \pm \frac{1}{2}$	A1					
		$\sin x = \pm \frac{1}{2}$	A1					
		$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1					