MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

Abbreviations

Awrt answers which round to
Cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

1 (i) (ii) (iii)		B1 B1 B1	
2	$\begin{aligned} & \cos \left(3 x-\frac{\pi}{4}\right)=(\pm) \frac{1}{\sqrt{2}} \text { oe } \\ & 3 x-\frac{\pi}{4}=-\frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4} \\ & x=\left(-\frac{\pi}{4}+\frac{\pi}{4}\right) \div 3,\left(\frac{\pi}{4}+\frac{\pi}{4}\right) \div 3,\left(\frac{3 \pi}{4}+\frac{\pi}{4}\right) \div 3 \text { oe } \\ & \left.x=0 \text { and } \frac{\pi}{6} \text { (or } 0 \text { and } 0.524\right) \\ & x=\frac{\pi}{3}(\text { or } 1.05) \end{aligned}$	M1 DM1 A2/1/0	division by 2 and square root correct order of operations in order to obtain a solution A2 for 3 solutions and no extras in the range A1 for 2 solutions A0 for one solution or no solutions

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

3 (a) (b) (c)	$\begin{aligned} & \left(\begin{array}{ccc} 12 & 16 & 4 \\ 30 & 32 & 10 \end{array}\right) \\ & \left(\begin{array}{cc} 28 & -24 \\ -8 & 76 \end{array}\right)=m\left(\begin{array}{cc} 4 & 6 \\ 2 & -8 \end{array}\right)+n\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \\ & -24=6 m \text { or }-8=2 m \text { giving } m=-4 \\ & 28=4 m+n \text { or } 76=-8 m+n \\ & n=44 \end{aligned} \begin{aligned} & a^{2}-6=0 \\ & \text { so } a= \pm \sqrt{6} \end{aligned}$	B2,1,0 B2,1,0 B1 M1 A1 B2,1,0	B2 for 6 elements correct, B1for 5 elements correct B2 for 4 correct elements in \mathbf{X}^{2} B1 for 3 correct elements in \mathbf{X}^{2} For $m=-4$ using correct \mathbf{I} complete method to obtain n B2 for $a= \pm \sqrt{6}$ or $a= \pm 2.45$, with no incorrect statements seen or B1 for $a= \pm \sqrt{6}$ or $a= \pm 2.45$ seen or B1 for $a=\sqrt{6}$ and no incorrect working
$4 \quad$ (i) (ii)	$\begin{aligned} & \frac{1}{2}(4 \sqrt{3}+1) \times B C=\frac{47}{2} \\ & B C=\frac{47}{(4 \sqrt{3}+1)} \times \frac{(4 \sqrt{3}-1)}{(4 \sqrt{3}-1)} \\ & B C=4 \sqrt{3}-1 \end{aligned}$ Alternative method $\begin{aligned} & \frac{1}{2}(4 \sqrt{3}+1) \times B C=\frac{47}{2} \\ & (4 \sqrt{3}+1)(a \sqrt{3}+b)=47 \end{aligned}$ Leading to $12 a+b=47$ and $a+4 b=0$ Solution of simultaneous equations $\begin{aligned} & B C=4 \sqrt{3-1} \\ & (4 \sqrt{3}+1)^{2}+(4 \sqrt{3}-1)^{2} \\ & =(48+8 \sqrt{3}+1)+(48-8 \sqrt{3}+1) \\ & A C^{2}=98 \\ & A C=7 \sqrt{2} \text { or } p=7 \end{aligned}$	B1 M1 A1 B1 M1 A1 B1FT B1cao	correct use of the area correct rationalisation Dependent on all method being seen Dependent on all method seen including solution of simultaneous equations 6 correct FT terms seen 98 and $7 \sqrt{2}$ or 98 and $p=7$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

5	When $x=\frac{\pi}{4}, y=2$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=5 \sec ^{2} x$ When $x=\frac{\pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=10$ Equation of normal $y-2=-\frac{1}{10}\left(x-\frac{\pi}{4}\right)$ $10 y+x-20-\frac{\pi}{4}=0$ or $10 y+x-20.8=0$ oe	B1 B1 B1 M1 A1	$y=2$ $5 \sec ^{2} x$ 10 from differentiation $y-\text { their } 2=-\frac{1}{\text { their } 10}\left(x-\frac{\pi}{4}\right)$ allow unsimplified
6 (i) (ii) (iii)	$\begin{aligned} & (2,16) \\ & k=0 \\ & k>16 \end{aligned}$	B1 B1 B1 M1 A1 B1 B1	shape intercepts on x-axis intercept on y-axis for a curve with a maximum and two arms $\begin{aligned} & (2, \pm 16) \text { seen or }(2, k) \text { where } k>0 \\ & (2,16) \text { or } x=2 \text { and } y=16 \text { only } \end{aligned}$

7	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sin 3 x \quad(+c) \\ & 4 \sqrt{3}=2 \frac{\sqrt{3}}{2}+c \end{aligned}$ $\begin{align*} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sin 3 x+3 \sqrt{3} \\ & y=-\frac{2}{3} \cos 3 x+3 \sqrt{3} x \quad(+d) \tag{+d}\\ & -\frac{1}{3}=-\frac{2}{3} \cos \frac{\pi}{3}+3 \sqrt{3}\left(\frac{\pi}{9}\right)+d \\ & y=-\frac{2}{3} \cos 3 x+3 \sqrt{3} x-\frac{\sqrt{3}}{3} \pi \end{align*}$	B1 M1 A1 B1FT M1 A1	$2 \sin 3 x$ finding constant using $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \sin 3 x+c$ making use of $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \sqrt{3}$ and $x=\frac{\pi}{9}$ Allow with $c=5.20$ or $\sqrt{27}$ FT integration of their $k \sin 3 x$ finding constant d for $k \cos 3 x+c x+d$ Allow $y=-0.667 \cos 3 x+5.20 x-0.577 \pi$ or better
8 (a) (b)	$\begin{aligned} & (2+k x)^{8}=256+1024 k x+1792 k^{2} x^{2}+1792 k^{3} x^{3} \\ & k=\frac{1}{4} \\ & p=112 \\ & q=28 \\ & { }^{9} C_{3} x^{6}\left(-\frac{2}{x^{2}}\right)^{3} \\ & 84 x^{6}\left(-\frac{8}{x^{6}}\right) \text { leading to } \\ & \quad-672 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1FT } \\ \text { B1FT } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \end{gathered}$	FT 1792 multiplied by their k^{2} FT 1792 multiplied by their k^{3} correct term seen Term selected and 2^{3} and ${ }^{9} C_{3}$ correctly evaluated

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

\begin{tabular}{|c|c|c|c|}
\hline 10 (i) \& \begin{tabular}{l}
\[
10^{2}=6^{2}+6^{2}-2 \times 6 \times 6 \times \cos A B C
\] \\
or
\[
\sin \left(\frac{A B C}{2}\right)=\frac{5}{6}
\] \\
or
\[
\begin{aligned}
\& A B C=\pi-\sin ^{-1} \frac{10 \sqrt{11}}{36} \\
\& A B C=1.9702
\end{aligned}
\]
\end{tabular} \& M1

A1 \& correct cosine rule statement or correct statement for $\sin \frac{A B C}{2}$ or equating areas oe

\hline (ii) \& | $X Y=2$ |
| :--- |
| Arc length $6\left(\frac{\pi-1.970}{2}\right)$ oe | \& B1

B1 \& for $X Y$ (may be implied by later work, allow on diagram) correct arc length (unsimplified)

\hline \& $$
\begin{aligned}
\text { Perimeter } & =2+2\left(6\left(\frac{\pi-1.970}{2}\right)\right) \\
& =9.03
\end{aligned}
$$ \& M1

A1 \& their $2+2 \times 6 \times$ their angle C

\hline (iii) \& | $\left(\frac{1}{2} \times 6^{2}\left(\frac{\pi-1.970}{2}\right)-\frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$ |
| :--- |
| $=4.50$ or 4.51 or better | \& | M1 M1 |
| :--- |
| A1 | \& | sector area using their C |
| :--- |
| area of $\triangle A B M$ where M is the midpoint of $A C$, or ($\Delta \mathrm{s} A B Y$ and $B X Y$) or $\triangle A B C$ Answers to 3sf or better |

\hline
\end{tabular}

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

11	$x^{2}-2 x-3=0$ or $y^{2}-6 y+5=0$ leading to $(3,5)$ and $(-1,1)$ Midpoint $(1,3)$ $($ Gradient -1$)$ Perpendicular bisector $y=4-x$ Meets the curve again if $x^{2}+10 x-15=0$ or $y^{2}-18 y+41=0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable
A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained. midpoint		
leading to $x=-5 \pm 2 \sqrt{10}, y=9 \mp 2 \sqrt{10}$			
$C D^{2}=(4 \sqrt{10})^{2}+(4 \sqrt{10})^{2}$	M1	M1 perpendicular bisector, must be using their perpendicular gradient and their midpoint substitution and simplification to obtain a three term quadratic equation in one variable. A1 for each 'pair'	
M1	Pythagoras using their coordinates from solution of second quadratic. $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$ must be seen if not using correct coordinates.		
A1 for $8 \sqrt{5}$ from $\sqrt{320}$ and all correct			
so far.			

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

12 (a)	$2^{2 x-1} \times 2^{2(x+y)}=2^{7} \text { and } \frac{3^{2(2 y-x)}}{3^{3(y-4)}}=1$	M1	expressing $4^{x+y}, 128$ as powers of 2 and $9^{2 y-x}, 27^{y-4}$ as powers of 3
	$\begin{aligned} & 2 x-1+2(x+y)=7 \mathrm{oe} \\ & 2(2 y-x)=3(y-4) \mathrm{oe} \\ & \text { leading to } x=4, \quad y=-4 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Correct equation from correct working Correct equation from correct working for both
	Example of Alternative method Method mark as above $2 x-1+2(x+y)=7$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	As before One of the correct equations in x and y
	leading to $y=\frac{(8-4 x)}{2}$ Correctly substituted in $\frac{3^{2(2 y-x)}}{3^{3(y-4)}}=1$ Leading to $2\left(\frac{2(8-4 x)}{2}-x\right)=3\left(\frac{(8-4 x)}{2}-4\right)$ Leading to $x=4$ and $y=-4$	A1 A1	Correct, unsimplified, equation in x or y only Both answers
(b)	$\begin{aligned} & \left(2\left(5^{z}\right)-1\right)\left(5^{z}+1\right)=0 \\ & \text { leading to } 2 \cdot 5^{z}=1 \quad\left(5^{z}=-1\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	solution of quadratic correct solution
	$5^{z}=0.5$	DM1	correct attempt to solve $2.5^{z}=k$, where k is positive
	$z=\frac{\log 0.5}{\log 5}$ or $z=-0.431$ or better	A1	must have one solution only

