## MARK SCHEME for the October/November 2013 series

## 0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                   | Syllabus | Paper |
|--------|-------------------------------|----------|-------|
|        | IGCSE – October/November 2013 | 0606     | 12    |

## Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √<sup>h</sup> implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
   B2, 1, 0 means that the candidate can earn anything from 0 to 2.

|   | Page 3                             | Page 3 Mark Scheme                                                    |                    |          |        |                                                   | Paper          |
|---|------------------------------------|-----------------------------------------------------------------------|--------------------|----------|--------|---------------------------------------------------|----------------|
|   |                                    | IGCSE – October/Nov                                                   | ober/November 2013 |          |        | 0606                                              | 12             |
| 1 | a = 3, b = 2,                      | <i>c</i> = 1                                                          | B1, B1,<br>B1      | ,<br>[3] | B1 for | each                                              |                |
| 2 | Using $b^2 - 4ac$<br>$4k^2 + 8k -$ | $f, 9 = 4 (k+1)^2 -5 = 0$                                             | M1<br>DM1          |          |        | any use of $b^2 - 4ac$<br>or solution of their of | quadratic in k |
|   | $k=-\frac{5}{2},$                  | $\left(\frac{1}{2}\right)$                                            | A1                 |          | A1 for | critical value(s), $\frac{1}{2}$                  | not necessary  |
|   | To be below th                     | the x-axis $k < -\frac{5}{2}$                                         | A1                 | [4]      | A1 for | $k < -\frac{5}{2}$ only                           |                |
|   | To lie under th                    | $x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ | M1                 |          | M1 for | a complete method                                 | to this point. |
|   | (                                  | $4(k+1)^2$ or equivalent                                              |                    |          |        |                                                   |                |

| Page 4                                                                                                                                                                                                                       | e 4 Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                           |                  |     |                                                                                        | Syllabus                                                                               | Paper                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                                                                                                                                                              | IGCSE – October/Nov                                                                                                                                                                                                                                                                                                                                                                                       | ember 20         | )13 |                                                                                        | 0606                                                                                   | 12                                                              |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                  |     |                                                                                        |                                                                                        |                                                                 |
| 3<br>$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ |                                                                                                                                                                                                                                                                                                                                                                                                           | M1               |     | M1 for dealing with the fractions<br>denominator must be correct, be<br>with numerator |                                                                                        |                                                                 |
| $=\frac{2+2}{\cos\theta(1)}$                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                           | DM1              |     |                                                                                        | expansion and use $+\sin^2\theta = 1$                                                  | e of                                                            |
| $=\frac{2(1+)}{\cos\theta(1+)}$                                                                                                                                                                                              | $\frac{\sin \theta}{+\sin \theta}$                                                                                                                                                                                                                                                                                                                                                                        | DM1              |     | M1 for                                                                                 | attempt to factori                                                                     | se                                                              |
| $=2 \sec \theta$                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                           | A1 [             | [4] | A1 for                                                                                 | obtaining final and                                                                    | swer correctly                                                  |
| $= \frac{(\sec \theta + t)}{\sec \theta}$ $= \frac{\sec^2 \theta + t}{\sec^2 \theta}$ $= \frac{2 \sec^2 \theta}{\sec^2 \theta}$ $= \frac{2 \sec^2 \theta}{\sec^2 \theta}$                                                    | $\theta + \frac{1}{\sec \theta + \tan \theta}$ $\frac{\operatorname{an} \theta}{\operatorname{tan} \theta}^{2} + \frac{1}{\operatorname{tan} \theta}$ $\frac{2 \sec \theta \tan \theta + \tan^{2} \theta + 1}{\sec \theta + \tan \theta}$ $\frac{2 \sec \theta \tan \theta}{\operatorname{tan} \theta}$ $\frac{2 \sec \theta \tan \theta}{\theta + \tan \theta}$ $\operatorname{ec} \theta + \tan \theta$ | M1<br>DM1<br>DM1 |     | M1 for $\tan^2 \theta$                                                                 | dealing with the f<br>expansion and use<br>$+1 = \sec^2 \theta$<br>or attempt to facto | e of                                                            |
| $\sec\theta$ $= 2\sec\theta$                                                                                                                                                                                                 | $\theta + \tan \theta$                                                                                                                                                                                                                                                                                                                                                                                    | A1               |     | A1 for                                                                                 | obtaining final an                                                                     | swer correctly                                                  |
| <b>4</b> (i) n (A) = 3                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           | B1 [             | 1]  | correct $n(A) =$                                                                       | ents listed for (i),<br>elements to get B<br>3. If they are not<br>given then B1.      |                                                                 |
| (ii) n ( <i>B</i> ) = 4                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           | B1               | 1]  | correct                                                                                | elements leading hey are not listed                                                    | then they must be<br>to $n(B) = 4$ to get<br>and correct answer |
| (iii) $A \cup B = \{$                                                                                                                                                                                                        | {60°, 240°, 300, 420°, 600°}                                                                                                                                                                                                                                                                                                                                                                              | √B1              | 1]  |                                                                                        | through on any se<br>not allow any rep                                                 | ets listed in (i) and betitions.                                |
| (iv) $A \cap B = \{$                                                                                                                                                                                                         | {60°, 420°}                                                                                                                                                                                                                                                                                                                                                                                               | √B1<br>[1        | 1]  | Follow<br>(ii).                                                                        | through on any se                                                                      | ets listed in (i) and                                           |

| Page 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mark Scheme                                                | Mark Scheme          |                  |                                                                                            | Paper                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|------------------|--------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IGCSE – October/Nove                                       | mber 2013            |                  | 0606                                                                                       | 12                       |
| <b>5</b> (i) $9x - \frac{1}{3}co$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s3x(+c)                                                    | B1, B1,<br>B1<br>[3] | B1 for           | 9x, B1 for $\frac{1}{3}$ or co<br>$-\frac{1}{3}\cos 3x$<br>the omission of $+c$            | os3 <i>x</i>             |
| (ii) $\left[9x - \frac{1}{3}cc\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                          |                      |                  |                                                                                            |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-\cos 3\pi \left( -\frac{1}{3}\cos \frac{\pi}{3} \right)$ | M1                   | M1 for<br>to (i) | correct use of limi                                                                        | its in their answer      |
| $=8\pi + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            | A1, A1<br>[3]        | A1 for           | each term                                                                                  |                          |
| $6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + \frac{a}{8}$ | $-\frac{b}{2}-2$                                           | M1                   | M1 for           | substitution of <i>x</i> =                                                                 | $=\frac{1}{2}$ into f(x) |
| leading to $a +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4b - 8 = 0                                                 | A1                   | A1 for           | correct equation in                                                                        | any form                 |
| f(2) = 2f(-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | M1                   |                  | attempt to substitution $f(x)$ and use $f(x) + f(-1)$                                      |                          |
| 8a + 16 + 2b -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 = 2(-a + 4 - b - 2)                                      | A1                   |                  | a correct equation                                                                         | in any form              |
| leading to $10a$<br>$\therefore a = -2, b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +4b+10 = 0 or equivalent<br>= $\frac{5}{2}$                | DM1<br>A1<br>[6]     | attemp<br>obtain | on both previous M<br>t to solve simultance<br>either <i>a</i> or <i>b</i><br>both correct |                          |

| Pa           | Page 6 Mark Scheme                                                    |                                                                                                 |               | Syllabus           | Paper                                                                                          |                     |  |  |  |
|--------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------|--------------------|------------------------------------------------------------------------------------------------|---------------------|--|--|--|
|              |                                                                       | IGCSE – October/Nove                                                                            | mber 20       | )13                | 0606                                                                                           | 12                  |  |  |  |
|              |                                                                       |                                                                                                 |               |                    |                                                                                                |                     |  |  |  |
| 7 (a)<br>(b) | <ul> <li>(i) 360</li> <li>(ii) 120</li> <li>(i) 924</li> </ul>        | )                                                                                               | B1            | 1]<br>1]           |                                                                                                |                     |  |  |  |
| (~)          | (i) 22<br>(ii) 28                                                     |                                                                                                 | [<br>B1       | 1]<br>1]           |                                                                                                |                     |  |  |  |
|              |                                                                       | $4 - ({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$<br>4 - 3M 3W - 2M 4W) | M1            |                    | t 3 terms, at least 2 t in terms of <i>C</i> nota                                              |                     |  |  |  |
|              | 92<br>= 672                                                           | 4 - 224 - 28                                                                                    | A1<br>A1<br>[ |                    | any pair (must be<br>final answer                                                              | evaluated)          |  |  |  |
| Or:          |                                                                       | ${}^{8}C_{4} \times {}^{4}C_{2} = 420$                                                          | M1            |                    | M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated |                     |  |  |  |
|              | 5M 1W ${}^{8}C_{5} \times {}^{4}C_{1} = 224$<br>6M ${}^{8}C_{6} = 28$ |                                                                                                 |               |                    | A1 for any pair (must be evaluated)                                                            |                     |  |  |  |
|              |                                                                       | Total $= 672$                                                                                   | A1            | A1 for             | final answer                                                                                   |                     |  |  |  |
| 8 (i)        |                                                                       |                                                                                                 | B1<br>B1      |                    | correct shape<br>(-3, 0) or -3 seen                                                            | on graph            |  |  |  |
|              |                                                                       |                                                                                                 | B1            |                    | (2, 0) or 2 seen on                                                                            |                     |  |  |  |
|              |                                                                       |                                                                                                 | B1            |                    | (0, 6) or 6 seen on                                                                            | graph or in a table |  |  |  |
| (ii)         | $\left(-\frac{1}{2}, \frac{25}{4}\right)$                             |                                                                                                 | B1, B1        | 4]<br>B1 for<br>2] | each                                                                                           |                     |  |  |  |
| (iii)        | $k > \frac{25}{4}$ or                                                 | $r \frac{25}{4} < k \ (\le 14)$                                                                 | B1<br>[       | 1]                 |                                                                                                |                     |  |  |  |

|   | Page 7                                                  | Mark Scheme                                                                          |                       | Syllabus       | Paper                                                                                                                              |                    |
|---|---------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|   |                                                         | IGCSE – October/Nove                                                                 | mber 2013             |                | 0606                                                                                                                               | 12                 |
| 9 | (a) $12x^2 \ln(2$                                       | $(x+1) + 4x^3 \left(\frac{2}{2x+1}\right)$                                           | M1<br>A2, 1, 0<br>[3] |                | differentiation of a each error                                                                                                    | correct product    |
|   | <b>(b) (i)</b> $\frac{dy}{dx}$                          | $\frac{1}{x} = \frac{(x+2)^{\frac{1}{2}}2 - 2x(x+2)^{-\frac{1}{2}}\frac{1}{2}}{x+2}$ | M1, A1                |                | differentiation of a ng $(x+2)^{\frac{1}{2}}$                                                                                      | quotient           |
|   |                                                         | $=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$                                      | DM1                   |                | correct unsimplified<br>or attempt to simpli                                                                                       |                    |
|   | =-                                                      | $\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$                                         | A1<br>[4]             | A1 for given a | correct simplificationswer                                                                                                         | on to obtain the   |
|   | <b>Or:</b> $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left($ | $\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)$              | M1, A1                |                | differentiation of a ng $(x+2)^{-\frac{1}{2}}$                                                                                     | product            |
|   | = <u>x</u>                                              | $(+2)^{-\frac{3}{2}}(2(x+2)-x) + \frac{4}{(x+2)^{\frac{3}{2}}}$                      | DM1<br>A1             | DM1 f          | correct unsimplified<br>or attempt to simpli<br>correct simplificationswer                                                         | fy                 |
|   | (ii) $\frac{10x}{\sqrt{x+2}}$ (                         | (+c)                                                                                 | M1,A1<br>[2]          | A1 cor         | $\frac{1}{5} \times \frac{2x}{\sqrt{x+2}} \text{ or } 5 \times \frac{2x}{\sqrt{x+2}}$ rect only, allow unside the omission of $+c$ |                    |
|   | (iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$             | -                                                                                    | M1                    |                | correct application<br>to (b)(ii)                                                                                                  | of limits in their |
|   |                                                         | $=\frac{40}{3}$                                                                      | A1 [2]                |                |                                                                                                                                    |                    |

| Page 8                                                                                                                                 | Mark Scheme                                                                                                     |              |                                                                                                                 | Syllabus                                     | Paper      |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|
| IGCSE – October/November 2013                                                                                                          |                                                                                                                 |              |                                                                                                                 | 0606                                         | 12         |
| <b>10 (i)</b> $\sqrt{20}$ or 4                                                                                                         | .47                                                                                                             | B1 [1]       |                                                                                                                 |                                              |            |
| (ii) Grad AB                                                                                                                           | $=\frac{1}{2}, \perp \text{grad} = -2$                                                                          | M1           | M1 for                                                                                                          | attempt at a perp g                          | gradient   |
|                                                                                                                                        | y - 4 = -2(x - 1)                                                                                               | M1, A1       |                                                                                                                 | e attempt at straight<br>e perpendicular and | <b>.</b> . |
| (y = -2x -                                                                                                                             | + 6)                                                                                                            | [3]          |                                                                                                                 | ow unsimplified                              |            |
| $(x-1)^2 +$                                                                                                                            | (iii) Coords of $C(x, y)$ and $BC^2 = 20$<br>$(x-1)^2 + (y-4)^2 = 20$ or<br>Coords of $C(x, y)$ and $AC^2 = 40$ |              | M1 for attempt to obtain relationship using<br>an appropriate length and the point $(1, 4)$ or<br>(-3, 2)       |                                              |            |
| $(x+3)^2 +$                                                                                                                            | $(y-2)^2 = 40$                                                                                                  | A1           | A1 for a correct equation                                                                                       |                                              |            |
| Need inte                                                                                                                              | ersection with $y = -2x + 6$ ,                                                                                  | DM1          | DM1 for attempt to solve with $y = -2x + 6$<br>and obtain a quadratic equation in terms of<br>one variable only |                                              |            |
| leads to 5<br>$5y^2 - 40y$                                                                                                             | $x^2 - 10x - 15 = 0$ or<br>-= 0                                                                                 |              |                                                                                                                 | Ĵ                                            |            |
|                                                                                                                                        | giving $x = 3, -1$<br>and $y = 0, 8$                                                                            |              | M1 for attempt to solve quadratic<br>A1 for each 'pair'                                                         |                                              |            |
|                                                                                                                                        | ector approach:                                                                                                 |              |                                                                                                                 |                                              |            |
| $\overrightarrow{AB} = \begin{pmatrix} 4\\2 \end{pmatrix}$                                                                             |                                                                                                                 | B1           | May be implied                                                                                                  |                                              |            |
| $\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$ |                                                                                                                 | M1<br>A1, A1 |                                                                                                                 | correct approach<br>each element corre       | ect        |
| $\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} +$                                                                         | $\begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$                                  | A1,A1        | A1 for                                                                                                          | each element corre                           | ect        |

| Page 9                                                 | Mark Schem                                                                                                 | е                  |                  | Syllabus                                                                                 | Paper             |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------|------------------|------------------------------------------------------------------------------------------|-------------------|
|                                                        | IGCSE – October/Nove                                                                                       |                    | 0606             | 12                                                                                       |                   |
| <b>11 (a) (i)</b> $\begin{pmatrix} 4\\4 \end{pmatrix}$ | $\begin{pmatrix} 3\\3 \end{pmatrix}$                                                                       | B1 [1]             |                  |                                                                                          |                   |
| (ii) A <sup>2</sup>                                    | $\mathbf{P} = \begin{pmatrix} 16 & 9\\ 12 & 13 \end{pmatrix}$                                              | B1, B1<br>[2]      |                  | nny 2 correct elemaill correct                                                           | ents              |
|                                                        | s the inverse matrix of $\mathbf{A}^2$<br>$\frac{1}{00} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$ | √B1,<br>√B1<br>[2] | Follow           | through on their A                                                                       | 2                 |
| (b) det $\mathbf{C} = x_0$<br>= 2:                     | $(x-1) - (-1)(x^2 - x + 1)$<br>$x^2 - 2x + 1$                                                              | M1<br>A1           | A1 for t         | attempt to obtain o<br>his correct quadra<br>correct det C                               |                   |
| $b^2 - 4ac <$                                          | < 0, 4 – 8 < 0                                                                                             | DM1                | solve us complet | r use of discriminations<br>using the formula, on<br>the the square in ord<br>eal roots. | or attempt to     |
| No real so                                             | blutions (so det $\mathbf{C} \neq 0$ )                                                                     | A1 [4]             |                  | correct reasoning of e no real roots.                                                    | or statement that |

|    | Pag        | je 10 |                                                                                                 |                  |            | Syllabus                                                                                                                                                                                                                                                                                                                                                  | Paper      |  |  |
|----|------------|-------|-------------------------------------------------------------------------------------------------|------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
|    |            |       | IGCSE – (                                                                                       | October/Novembe  | er 2013    | 0606                                                                                                                                                                                                                                                                                                                                                      | 12         |  |  |
| 12 | (a)        | (i)   | f(-10) = 299, f(8) = 19<br>Min point at (0, -1) or<br>∴ range $-1 \le y \le 299$                | when $y = -1$ B1 |            | M1 for substitution of either $x = -10$ or $x = 8$ , may be seen on diagram<br>B1 May be implied from final answer, may be seen on diagram<br>Must have $\leq$ for A1, do not allow x                                                                                                                                                                     |            |  |  |
|    |            | (ii)  | $x \ge 0$ or equivalent                                                                         | B1               | [3]<br>[1] | <ul> <li>Must have \$\leq\$ for A1, do not allow x</li> <li>Allow any domain which will make f a one-one function</li> <li>Assume upper and lower bound when necessary.</li> <li>M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of y.</li> <li>A1 must be in terms of x</li> </ul> |            |  |  |
|    | <b>(b)</b> | (i)   | $g^{-1}(x) = \ln\left(\frac{x+2}{4}\right)$<br>or $\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$ | M1<br>A1         | [2]        |                                                                                                                                                                                                                                                                                                                                                           |            |  |  |
|    |            | (ii)  | gh(x) = g(1n5x)<br>= $4e^{1n5x} - 2$<br>20x - 2 = 18, x = 1                                     | M1<br>A1<br>A1   | [3]        | M1 for correct order<br>A1 for correct expression<br>A1 for correct solution fro<br>working                                                                                                                                                                                                                                                               |            |  |  |
|    |            |       | <b>Or</b> $h(x) = g^{-1}(18)$<br>1n5x = 1n5<br>leading to $x = 1$                               | M1<br>A1<br>A1   |            | M1 for correct order<br>A1 for correct equation<br>A1 for correct solution <b>fr</b><br><b>working</b>                                                                                                                                                                                                                                                    | om correct |  |  |