MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 22, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Marks	Guidance
1 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k(x-9)^{-\frac{3}{2}}$	M1	If M0 then SC1 for the correct answer with an extra term.
	$k = -\frac{5}{2}$ isw	A1	condone $5 \times -\frac{1}{2}$
(ii)	$\delta y = their\left(\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=13}\right) \times h$	M1	
	-0.3125 <i>h</i> oe	A1	
2	$\begin{array}{c c} & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ &$	B3,2,1,0	 B2 for C as a proper subset of A A and B with an intersection B and C mutually exclusive Or B1 for any two of the these and B1 for the number of elements correctly placed
	5	B1FT	FT their 5
3	Integrates $9x^2 - 3x^{-2}$	M1	condone one rearrangement error
	$(y=)\frac{9x^3}{3} - \frac{3x^{-1}}{-1}(+c)$	A1	
	Substitute $x = 1$ and $y = 7$ into <i>their</i> expression with 'c'	M1	<i>their</i> expression must be from an attempt to integrate
	$y = 3x^3 + 3x^{-1} + 1$ oe isw	A1	condone $y = 3x^3 + 3x^{-1} + c$ and $c = 1$ seen, isw

	Page 3	B Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – March 2016			0606	22	
-				1			
Q	uestion	Answer	Marks		Guidance		
4	(a)	a = 10 b = 6 c = 4 or $10\cos 6x + 4$	B2,1,0	for B a e.g. t	for B1 allow correct FT of <i>c</i> from <i>a</i> e.g. <i>their</i> $c = 14 - their a$		
	(b)	y 1 0 45° 90° 135° 180° X -2 -5	B3,2,1,0	Corre maxir -5; st at (18	ect shape; tw mum at 1 an arting at (0, 30, -2)	o cycles; bo d minimum −2) and end	oth at ling
5	(i)	$2187 + 5103kx + 5103k^2x^2$	B3	1 for	each term; i	gnore extra	terms
	(ii)	$2(5103k) = 5103k^2$	M1	must	not include	x, x^2	
		<i>k</i> = 2	A1	A0 if	k = 0 also g	iven as a so	lution
6		$\frac{x}{1+3\sqrt{3}} = \frac{5-\sqrt{3}}{6+2\sqrt{3}}$ oe soi	M1				
		$(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}}$ oe	M1				
		$(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}} \times \frac{6-2\sqrt{3}}{6-2\sqrt{3}}$	M1				
		p = -27, q = 23 isw	A1 + A1	allow	$(x=)\frac{-27}{-27}$	$\frac{+23\sqrt{3}}{6}$	

	Page 4	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – March 2016		0606 22
Qu	iestion	Answer	Marks	Guidance
7	(a)	$ \begin{pmatrix} 4 & 6 & 8 \\ -2 & 0 & 4 \end{pmatrix} - \begin{pmatrix} 18 & 3 & 6 \\ 21 & -6 & 3 \end{pmatrix} $	M1	for attempt to multiply and subtract
		$\begin{pmatrix} -14 & 3 & 2 \\ -23 & 6 & 1 \end{pmatrix}$	A1	
	(b) (i)	$-\frac{1}{2} \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix} $ oe	B1 + B1	1 mark for $-\frac{1}{2}$ and 1 mark
		Valid mathed	M1	for $k \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$
	(11)		IVII	$\mathbf{A}\mathbf{D}$ \mathbf{D} – $\mathbf{C}\mathbf{D}$
		$\begin{pmatrix} -8 & -6 \\ 13 & 7 \end{pmatrix}$	A2,1,0	-1 each error
				If M0 then SC1 for
				$\mathbf{DC} = \begin{pmatrix} 4 & 3 \\ -14 & -5 \end{pmatrix}$
8	(i)	Eliminate x (or y)	M1	$3(2y-2)^{2} + (2y-2)y - y^{2} = 12$
				$3x^{2} + x\left(\frac{x+2}{2}\right) - \left(\frac{x+2}{2}\right)^{2} = 12$
		$13y^2 - 26y = 0$ or $\frac{13}{4}x^2 - 13 = 0$ oe	A1	
		$13y(y-2)$ or $x^2 = 4$	M1	
		$x = -2, \qquad \qquad x = 2$	A1	or for $(-2, 0)$ or $(2, 2)$ from correct
		v = 0 $v = 2$ isw	+ A1FT	working FT <i>their</i> x or y values to find <i>their</i>
		y o y <u>y</u> .o		y or x values; or A1 for $(-2, 0)$ and $(2, 2)$
	(ii)	their $m_{AB} = \frac{1}{2}$ or their $m_{BC} = -2$ soi	M1	may be unsimplified or Pythagoras' theorem correctly applied to <i>their</i> $(0, -2)$, <i>their</i> $(2, 2)$ and $(0, 6)$
		use of $(m_{AB}) \times (m_{BC}) = -1$ and conclusion	A1	or use of $h^2 = a^2 + b^2$ and conclusion

Page	5 Mark Scheme Cambridge IGCSE – Ma	rch 2016	Syllabus 0606	Paper 22
Question	Answer	Marks	Guid	ance
9 (i)	$RT = \frac{1}{\tan \theta}$	B1	or $RT = \cot \theta$	
	$RS = \frac{1}{\sin \theta}$	B1	or $RS = \csc \theta$	
	$x = 1 - \frac{1}{2\tan\theta} - \frac{1}{2\sin\theta}$ oe $\cot\theta \csc\theta$	B1FT	FT <i>their RT</i> and <i>t</i> provided both are ratios	<i>heir RS</i> , functions of trig

	or $x = 1 - \frac{\cot \theta}{2} - \frac{\csc \theta}{2}$ oe		ratios
(ii)	$A = x + \frac{1}{2}\cot\theta$ oe soi	M1	
	correct completion to given answer $A = 1 - \frac{\csc \theta}{2}$	A1	
(iii)	$\csc\theta = \frac{2\sqrt{3}}{3}$ oe	M1	equivalent must be exact
	$\theta = \frac{\pi}{3}$ cao	A1	implies M1
10 (a) (i)	$(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$	M1	implied by $\alpha + \beta = 15$ or $2\alpha - 24 = -20$
	$\alpha = 2$	A1	
	$\beta = 13$	A1	
(ii)	$\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe	M1	
	$\frac{15\mathbf{i}-20\mathbf{j}}{25}$ oe	A1FT	FT <i>their</i> $\alpha + \beta$ provided non-zero
(b)	$\overrightarrow{OC} = \overrightarrow{OA} + \lambda \overrightarrow{AB}$ or $\overrightarrow{OC} = OB + (1 - \lambda)\overrightarrow{BA}$	B1	
	$[\overrightarrow{OC} =] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) \text{ or}$ $[\overrightarrow{OC} =] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$	M1	
	$[\overrightarrow{OC} =] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$	A1	
(c)	$\frac{2}{\mu+3} = \frac{\mu}{9}$	M1	or multiplies one of the vectors by a general scale factor and finds a pair of simultaneous equations to solve
	Solves $\mu^2 + 3\mu - 18 = 0$	M1	or solves <i>their</i> correct equation to find <i>their</i> scale factor and attempts to use it to find μ
	$\mu = 3$	A1	A0 if -6 not discarded

	Page 6	e 6 Mark Scheme			Paper	
		Cambridge IGCSE – March 2016			22	
Qu	estion	Answer	Marks	Guid	lance	
11	(i)	$\frac{dy}{dx} = \frac{(x^2 + 1)(1) - (x)(2x)}{(x^2 + 1)^2} \text{oe}$	M1*	Attempts to differentiate using th quotient rule		
			A1	correct; allow unsimplified		
		$their(1-x^2) = 0$	M1 dep*			
		x = 1, x = -1	A1	from correct wor	king only	
		y = 0.5, $y = -0.5$ oe	A1	from correct work	king only	
				or A1 for each of $(1, 0.5)$, (-1, -0.5) oe from correct working;		
				unsupported answers do not se		score
((ii)	$\frac{d}{dx} \left(\left(x^2 + 1 \right)^2 \right) = 2 \left(x^2 + 1 \right) (2x) \text{ soi}$	B1	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^4 + 2x^2 + 1\right)$	$=4x^3+4x$	
		$\frac{d^2 y}{dx^2} = (x^2 + 1) \frac{(x^2 + 1)(their - 2x) - (their(1 - x^2))2(2x)}{(x^2 + 1)^4}$	M1	Applies quotient rule and fact out		tors
		Correct completion to given answer $\frac{d^2 y}{dx^2} = \frac{2x^3 - 6x}{(x^2 + 1)^3}$	A1			
		When $x = 1$ their $\frac{d^2 y}{dx^2}\Big _{x=1} = \frac{2(1)^3 - 6(1)}{(1^2 + 1)^3}$ oe < 0 therefore	B1FT	Complete method including comparison to 0; FT <i>their</i> first second derivative		st or
		maximum				
		When $x = -1$ their $\frac{d^2 y}{dx^2}\Big _{x=-1} = \frac{2(-1)^3 - 6(-1)}{((-1)^2 + 1)^3}$ or $0 > 0$ therefore minimum	B1FT	Complete method comparison to 0; second derivative	l including FT <i>their</i> fir	st or

Pag	Page 7 Mark Scheme				Syllabus	Paper	
		Cambridge IGCSE – March 2016			0606	22	
Question	n	Answer	Marks	s Guidance			
12 (i)		$9t^{2} - 63t + 90 = 0$ (9t - 18)(t - 5)	M1				
		showing that $t = 2$ is smaller value of t	A1	must e.g. <i>t</i>	see evidence $= 5$ and $t = 2$	e of solving 2 or factors	
(ii)		$(a=)\frac{\mathrm{d}v}{\mathrm{d}t}$ attempted	M1				
		18(3.5) - 63 = 0 cao	A1				
(iii)		$\int (9t^2 - 63t + 90) \mathrm{d}t$	M1				
		$(s=)\frac{9t^3}{3} - \frac{63t^2}{2} + 90t$ isw	A2,1,0	-1 fo	r each error	or for $+c$ lef	t in
(iv) ((a)	$(s =)\frac{9(2)^3}{3} - \frac{63(2)^2}{2} + 90(2)$	M1	or $\begin{bmatrix} 9 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\frac{9t^3}{3} - \frac{63t^2}{2} + 9$	$\left[\frac{1}{2} \right]_{0}^{2}$	
		78 [m]	A1		ieir (m)		
((b)	$(s =)\frac{9(3)^3}{3} - \frac{63(3)^2}{2} + 90(3) = 67.5$	M1	FT th	heir (iii)		
		<i>their</i> 78 + 10.5 = 88.5 [m]	A1FT				