MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12
Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
$\mathrm{B} 2,1,0$ means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

OW -1,2 This is deducted from A or B marks when essential working is omitted.
PA -1 This is deducted from A or B marks in the case of premature approximation.

S-1 Occasionally used for persistent slackness - usually discussed at a meeting.

EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

1 (i) $\frac{2}{21}(7 x-5)^{\frac{3}{2}}(+c)$ (ii) $\begin{aligned} & \frac{2}{21}\left(16^{\frac{3}{2}}-9^{\frac{3}{2}}\right) \quad\left(=\frac{2}{21}(64-27)\right) \\ & =\frac{74}{21} \text { or awrt } 3.52 \text { or } 3 \frac{11}{21} \end{aligned}$	$\begin{gathered} \text { B1, B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$ [5]	B1 for multiplication by $\frac{2}{3}$, or division by $\frac{3}{2}$ B1 for $(7 x-5)^{\frac{3}{2}}, \mathbf{B} 1$ for $\frac{1}{7}$ M1 for correct use of limits, must have attempted integration, must be using their $(7 x-5)^{\frac{2 n+1}{2}}$ from (i)
2 $\begin{aligned} & 4 u^{2}-5 u+1=0 \\ & (4 u-1)(u-1)=0 \end{aligned}$ or $\left(4.2^{x}-1\right)\left(2^{x}-1\right)=0$ $2^{x}=\frac{1}{4}, \quad 2^{x}=1$ leading to $x=-2,0$ Alternate scheme for one correct factor: $2^{x}=\frac{1}{4}$, leading to $x=-2$ $2^{x}=1$, leading to $x=0$	B1, M1 DM1 A1 A1 [A1] [A1] [5]	B1 for $2^{2 x+2}=4 u^{2}$ or $4 \times 2^{2 x}$ or $2^{2} \times 2^{2 x}$ or $2^{2} u^{2}$ M1 for attempt to obtain a 3 term quadratic equation in terms of either or, equated to zero. DM1 for solution of quadratic equation A1 for both A1 for both
3 $\begin{aligned} & \frac{\cos A}{\sin A}+\frac{\sin A}{1+\cos A} \\ & =\frac{\cos A+\cos ^{2} A+\sin ^{2} A}{\sin A(1+\cos A)} \\ & =\frac{(1+\cos A)}{\sin A(1+\cos A)} \\ & =\frac{1}{\sin A} \quad=\operatorname{cosec} A \end{aligned}$ Alternate solution: $\begin{aligned} & \cot A+\frac{\sin A(1-\cos A)}{(1+\cos A)(1-\cos A)} \\ & =\cot A+\frac{\sin A(1-\cos A)}{\left.\sin ^{2} A\right)} \\ & =\cot A+\frac{1-\cos A}{\sin A} \\ & =\cot A-\cot A+\frac{1}{\sin A} \text { leading to } \operatorname{cosec} A \end{aligned}$	B1 M1 M1 A1 [M1] [M1] [M1] [A1] [4]	B1 for $\cot A=\frac{\cos A}{\sin A}$ M1 for obtaining as a single fraction M1 for use of $\cos ^{2} \mathrm{~A}+\sin ^{2} A=1$ A1 for correct simplification - answer given. M1 for multiplying by $(1-\cos A)$ M1 for use of $\cos ^{2} A+\sin ^{2} A=1$ anywhere M1 for cancelling $\sin A$ A1 for subtraction and simplification

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

4 Using $y=\frac{2-5 x}{3}$ or, using $x=\frac{2-3 y}{5}$ $5 x^{2}-21 x+4=0$ or $3 y^{2}+17 y-6=0$ $\begin{array}{ll} (5 x-1)(x-4)=0 & \text { or }(3 y-1)(y+6)=0 \\ x=\frac{1}{5}, y=\frac{1}{3} \quad x=4, \quad y=-6 \end{array}$ Alternate substitutions: $x=\frac{2 y}{3+y} \quad \text { or } \quad y=\frac{3 x}{2-x}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1, A1 } \end{gathered}$	M1 for substitution to get an equation in terms of one variable M1 for attempt to form a 3 term quadratic equation $=0$ DM1 for solution of quadratic equation A1 for each 'pair'
$5 \quad$ (i) $\quad\left(2-x^{2}\right) \frac{3}{(3 x+1)}-2 x \ln (3 x+1)$ (ii) $\frac{5 x\left(-2 \sec ^{2} 2 x\right)-5(4-\tan 2 x)}{25 x^{2}}$ or $\frac{5 x\left(-2 \sec ^{2} 2 x\right)-5(4-\tan 2 x)}{(5 x)^{2}}$	B1 M1 A1 B1 M1 A1 [6]	B1 for differentiating $\ln (3 x+1)$ correctly M1 for correct attempt at product A1 for all else correct B1 for differentiating $\tan (4-2 x)$ correctly M1 for correct attempt at quotient or product A1 for all else correct
6 (i) $\begin{aligned} & \frac{8(\sqrt{3-1})}{(\sqrt{3}+1)(\sqrt{3}-1)}=4(\sqrt{3}-1) \\ & \text { or } \frac{8}{\sqrt{3}+1}=a(\sqrt{3}-1) \\ & 8=a(\sqrt{3}-1)(\sqrt{3}+1) \\ & a=4 \end{aligned}$ (ii) $\begin{aligned} & \sin 60=\frac{\sqrt{3}}{2}=\frac{h}{4(\sqrt{3}-1)} \\ & \tan 60=\sqrt{3}=\frac{h}{2(\sqrt{3}-1)} \end{aligned}$ Or $(4(\sqrt{3}-1))^{2}=h^{2}+(2(\sqrt{3}-1))^{2}$ $h=6-2 \sqrt{3}$ ANSWER GIVEN $\begin{aligned} & \text { (iii) Area }=\frac{1}{2} 4(\sqrt{3}-1)(6-2 \sqrt{3}) \\ & \text { or } \frac{1}{2} 4(\sqrt{3}-1) 4(\sqrt{3}-1) \sin 60^{\circ} \\ & =16 \sqrt{3}-24 \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	M1 for rationalisation or attempt to form equation M1 for use of sine or tangent and their value of a from (i) or $\frac{8}{\sqrt{3}+1}$ or Pythagoras, A1 for rearranging and simplifying correctly to obtain given answer. M1 for valid method for area using their a from (i) or $\frac{8}{\sqrt{3}+1}$ A1 working must be seen

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

7 (i) \qquad (ii) $x^{2}-x-6=6$, leading to $x=-3,4$ (www) $x^{2}-x-6=-6$, leading to $x=0,1$ (www)	B1 B1 B1 B1 B1 B1 [6]	B1 for shape B1 for $x=-2,3$ B1 for $y=6$ B1 for one correct answer B1 for a second correct answer B1 for a third and fourth correct answer
8 (i) $\operatorname{arc} A B=\frac{20 \pi}{3} \quad$ or $20.94,20.9$ $\begin{aligned} & \tan \frac{\pi}{3}=\frac{A X}{10}, \mathrm{AX}=10 \sqrt{3}, 17.3 \quad(\text { or } X B) \\ & \text { Perimeter }=\text { awrt } 55.6 \text { or } 20 \sqrt{3}+\frac{20 \pi}{3} \end{aligned}$ (ii) Area of sector $A O B=\frac{1}{2} 10^{2} \frac{2 \pi}{3}$ or 104.7 or 105 Area of $O A X B=100 \sqrt{3}$ or 173.2 Shaded area $=$ awrt 68.5 or $100 \sqrt{3}-\frac{100 \pi}{3}$	B1 B1 B1 B1 M1 M1 A1 [7]	B1 for arc length correct B1 for $A X / X B$ B1 for final answer B1 for sector area correct M1 for valid attempt at area $O A X B$, using their $B X$ from part (i) $(10 \times$ their $B X)$ M1 for area $O A X B$ - sector area used (independent) Must be considering a quadrilateral, not a triangle.
9 (i) 250 (ii) $8=\mathrm{e}^{\frac{x}{100}}$ $\frac{x}{100}=\ln$ 'their 8 ' or $x=100 \ln$ their 8 $x=208$ or awrt 208 $\text { (iii) } \begin{aligned} \frac{\mathrm{d} N}{\mathrm{~d} x} & =\frac{1}{2} \mathrm{e}^{\frac{x}{100}} \\ 45 & =\frac{1}{2} \mathrm{e}^{\frac{x}{100}} \\ \mathrm{e}^{\frac{x}{100}} & =90, \text { so } N=4700 \end{aligned}$ (awrt 4700)	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1, B1 } \\ \text { M1 } \\ \text { A1 } \\ {[8]} \end{gathered}$	B1 for 250 B1 for $8=\mathrm{e}^{\frac{x}{100}}$ M1 for dealing with e correctly, using \ln A1 for awrt 208 B1 for $\mathrm{e}^{\frac{x}{100}}, \mathrm{~B} 1$ for $\frac{1}{2} \mathrm{e}^{\frac{x}{100}}$ or $\frac{50}{100} \mathrm{e}^{\frac{x}{100}}$ M1 for equating their $\frac{\mathrm{d} N}{\mathrm{~d} x}$ to 45 and attempt to solve A1 for 4700

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

10 (a) (i) $\begin{aligned} & \mathrm{f}^{\prime}(x)=-(2+x)^{-2} \\ & \mathrm{f}^{\prime \prime}(x)=2(2+x)^{-3} \end{aligned}$ (ii) $\begin{aligned} & y=\frac{1}{2+x}, \quad x=\frac{1}{y}-2 \\ & \mathrm{f}^{-1}(x)=\frac{1}{x}-2 \text { or } \frac{1-2 x}{x} \end{aligned}$ (iii) $\mathrm{f}^{2}(x)=\left(\frac{1}{2+\frac{1}{2+x}}\right)=\frac{2+x}{5+2 x}$ Equating to -1 leads to $x=-\frac{7}{3}$ or -2.33 (b) (i) $\mathrm{gh}(x)$ or gh (ii) $\mathrm{kg}(x)$ or kg	B1 B1 M1 A1 M1 DM1 A1 B1 B1 [9]	First B1 may be implied by a correct answer for $\mathrm{f}^{\prime \prime}(x)$ If done by quotient rule, allow unsimplified M1 for a valid attempt at the inverse A1 must be in correct form, allow $y=\ldots$ M1 for correct attempt at $\mathrm{f}^{2}(x)$ DM1 for attempt at solution of $\mathrm{f}^{2}(x)=-1$ A1 for $x=-\frac{7}{3}$ or equivalent B1 for either form B1 for either form
11 (i) $\mathrm{P}(3,1)$ Grad $A B=\frac{18}{12}$ $\perp \operatorname{grad}-\frac{2}{3}$ $P Q: y-1=-\frac{2}{3}(x-3) \quad(2 x+3 y=9)$ (ii) $Q(-15,13)$	B1, B1 B1 -B1 , B1 M1 A1 M1 A1	B1 for each coordinate B1 for gradient of $A B$ $\sqrt{\text { B1 }}$ for perpendicular gradient $\checkmark \mathbf{B} 1$ on their perp gradient and their point P Must be $y=\ldots$ M1 for use of $y=13$ and their $P Q$ equation. A1 for both coordinates (can be implied) M1 for a valid attempt at area $\frac{1}{2} \times P Q \times P B$ Matrix method using their coordinates correctly $\frac{1}{2} \times Q B \times \text { vertical perp height }$

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

12 EITHER
(i) velocity $=12 \mathbf{i}+16 \mathbf{j}$
position $=(54 \mathbf{i}+16 \mathbf{j})+(36 \mathbf{i}+48 \mathbf{j})$
$=90 \mathbf{i}+64 \mathbf{j}$ ANSWER GIVEN
(ii) $(54 \mathbf{i}+16 \mathbf{j})+(12 t \mathbf{i}+16 \mathbf{j} \mathbf{j})$
(iii) At 1600 ,
ship has 'travelled' ($102 \mathbf{i}+80 \mathbf{j}$)
boat needs to do this in 2 hours
so velocity of boat $(51 \mathbf{i}+40 \mathbf{j})$
speed $\sqrt{51^{2}+40^{2}}$
$=64.8$
(iv) $(51 \mathbf{i}+40 \mathbf{j})-(12 \mathbf{i}+16 \mathbf{j})$
$=39 \mathbf{i}+24 \mathbf{j}$
(v) $\tan \alpha=\frac{51}{40}$
angle $=51.9$

M1 for
($3 \times$ their velocity (must in numeric vector form) $)+(54 \mathbf{i}+16 \mathbf{j})$

M1 for position vector + (their numeric velocity vector \times time)

B1 for $(102 \mathbf{i}+80 \mathbf{j})$
M1 for attempt at velocity of boat and speed

B1, allow unsimplified but must be correct

M1 for use of tan and their velocity vector

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0606	12

12 OR
(i) $\overrightarrow{O Q} \mathbf{a}+\frac{1}{3}(\mathbf{b}-\mathbf{a})$

$$
\begin{aligned}
& =\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{b} \\
\overrightarrow{P Q} & =-\frac{5}{4} \mathbf{b}+\mathbf{a}+\frac{1}{3}(\mathbf{b}-\mathbf{a}) \\
& =\frac{2}{3} \mathbf{a}-\frac{11}{12} \mathbf{b}
\end{aligned}
$$

(ii) $\overrightarrow{Q R}=\lambda \mathbf{a}-\left(\mathbf{a}+\frac{1}{3}(\mathbf{b}-\mathbf{a})\right)$

$$
=\lambda \mathbf{a}-\frac{2}{3} \mathbf{a}-\frac{1}{3} \mathbf{b}
$$

(iii) $\overrightarrow{Q R}=\mu(\overrightarrow{P Q}+\overrightarrow{Q R})$
$(1-\mu) \overrightarrow{Q R}=\mu \overrightarrow{P Q}$
$Q R=\frac{\mu}{1-\mu}\left(\frac{2}{3} \mathbf{a}-\frac{11}{12} \mathbf{b}\right)$
(iv) Equating b's $-\frac{11}{12} \frac{\mu}{1-\mu}=-\frac{1}{3}$

$$
\begin{aligned}
& \mu=\frac{4}{15} \\
& \lambda=\frac{10}{11}
\end{aligned}
$$

Allow unsimplified

Follow through on their $\overrightarrow{O Q}$, allow unsimplified

M1 for $\lambda \mathrm{a}$ - their $\overrightarrow{O Q}$

A1 - allow unsimplified

M1 for attempt to obtain $\overrightarrow{Q R}$ in terms of $\overrightarrow{P Q}$
M1 for attempt to simplifiy

M1 for equating like vectors and attempt to solve

A1 for each

