

ADDITIONAL MATHEMATICS Paper 2 0606/21 May/June 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme                     | Syllabus | Paper |
|--------|---------------------------------|----------|-------|
|        | Cambridge IGCSE – May/June 2016 | 0606     | 21    |

## Abbreviations

| awrt | answers which round to     |
|------|----------------------------|
| cao  | correct answer only        |
| dep  | dependent                  |
| FŤ   | follow through after error |
| isw  | ignore subsequent working  |
| oe   | or equivalent              |
| rot  | rounded or truncated       |
| SC   | Special Case               |
| soi  | seen or implied            |
| WWW  | without wrong working      |
|      |                            |

| Q | uestion | Answer                                                                                                       | Marks      | Guidance                                                                              |
|---|---------|--------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------|
| 1 |         | $x^2 - 2x - 15$                                                                                              | M1         | expands and rearranges to form a 3 term quadratic                                     |
|   |         | critical values –3 and 5                                                                                     | A1         | not from wrong working                                                                |
|   |         | x < -3  x > 5                                                                                                | A1         | mark final inequality;<br><b>A0</b> if spurious attempt to combine e.g.<br>5 < x < -3 |
| 2 | (a)     |                                                                                                              | B1         | It must be clear how the sets are nested                                              |
|   | (b) (i) | $h \in P$                                                                                                    | B1         | Allow $\{m, a, t, h, s\}$ for <i>P</i>                                                |
|   | (ii)    | $n(P \cap Q) = 2$ cao                                                                                        | <b>B</b> 1 |                                                                                       |
|   | (iii)   | $\{ t, h, s \}$                                                                                              | B1         |                                                                                       |
| 3 | (i)     | -2                                                                                                           | <b>B</b> 1 |                                                                                       |
|   | (ii)    | -n                                                                                                           | <b>B</b> 1 |                                                                                       |
|   | (iii)   | $\frac{\lg 5}{\log_5 10} = [(\lg y)^2] \text{ or } \frac{\lg 20 - \lg 4}{\lceil \lg 5 \rceil} = [(\lg y)^2]$ | M1         | One log law used correctly                                                            |
|   |         | correct completion to $(lg5)^2$ isw                                                                          | A1         | answer only does not score                                                            |
|   | (iv)    | $[\log_r]6x^2 = [\log_r]600$                                                                                 | <b>B</b> 1 | Condone base missing                                                                  |
|   |         | x = 10 only                                                                                                  | <b>B</b> 1 |                                                                                       |

Page 3

## Mark Scheme Cambridge IGCSE – May/June 2016

| Syllabus | Paper |
|----------|-------|
| 0606     | 21    |

| Q | uestion | Answer                                                                                                                                                         | Marks        | Guidance                                                                                                                                                                                                                                                                                            |
|---|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (i)     | $\frac{\pi}{3}$ isw                                                                                                                                            | B1           |                                                                                                                                                                                                                                                                                                     |
|   | (ii)    | [Area triangle $ABC = \frac{1}{2} \times 10^2 \times \sin\left(\frac{their \pi}{3}\right)$ oe                                                                  | M1           | seen or implied by $25\sqrt{3}$ or $43.3(0)$                                                                                                                                                                                                                                                        |
|   |         | [Area 1 sector = ] $\frac{1}{2} \times 5^2 \times their \frac{\pi}{3}$ oe<br>or $\pi \times 5^2 \times \frac{their 60^\circ}{360}$                             | M1           | seen or implied by $\frac{25\pi}{6}$ or 13.0(8)<br>or 13.09                                                                                                                                                                                                                                         |
|   |         | Complete correct plan                                                                                                                                          | M1           | e.g. <i>their</i> triangle – 3( <i>their</i> sector)                                                                                                                                                                                                                                                |
|   |         | 4.03(1) or $25\sqrt{3} - \frac{25\pi}{2}$ isw                                                                                                                  | A1           | Units not required                                                                                                                                                                                                                                                                                  |
| 5 | (a)     | $\frac{\sqrt{8}}{\left(\sqrt{7}-\sqrt{5}\right)} \times \frac{\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)} \text{ and attempt to}$ multiply | M1           |                                                                                                                                                                                                                                                                                                     |
|   |         | $\frac{\sqrt{56} + \sqrt{40}}{2}  \text{oe}$                                                                                                                   | A1           | not from wrong working                                                                                                                                                                                                                                                                              |
|   |         | $\sqrt{14} + \sqrt{10}$ $q^2 + 4q\sqrt{3} + 12  \text{soi}$                                                                                                    | A1           |                                                                                                                                                                                                                                                                                                     |
|   | (b)     | $q^2 + 4q\sqrt{3} + 12$ soi                                                                                                                                    | B1           |                                                                                                                                                                                                                                                                                                     |
|   |         | $28 = q^2 + 12$ oe                                                                                                                                             | M1           | can be implied by 4 and 16 or $-4$ and $-16$                                                                                                                                                                                                                                                        |
|   |         | q = 4, -4 p = 16, -16                                                                                                                                          | A1           | all values                                                                                                                                                                                                                                                                                          |
| 6 | (i)     | $4(x+1)^2-9$                                                                                                                                                   | B3,2,<br>1,0 | one mark for each of $p$ , $q$ , $r$ correct in<br>a correctly formatted expression;<br>allow correct equivalent values;                                                                                                                                                                            |
|   |         |                                                                                                                                                                |              | If <b>B0</b> then <b>SC2</b> for $4(x+1)-9$ or<br><b>SC1</b> for correct 3 values seen in<br>incorrect format e.g. $4(x+1x)-9$ or<br>$4(x^2+1)-9$<br>or for a correct completed square form<br>of the original expression in a<br>different but correct format. e.g.<br>$2(\sqrt{2}x+\sqrt{2})^2-9$ |

| Page 4 | Mark Scheme                     | Syllabus | Paper |
|--------|---------------------------------|----------|-------|
|        | Cambridge IGCSE – May/June 2016 | 0606     | 21    |

| Question  | Answer                                                                                                                                  | Marks      | Guidance                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
| (ii)      | (-1, 9)                                                                                                                                 | B2FT       | <b>B1FT</b> $(-q, -r)$ $r < 0$ for each correct coordinate                                                   |
| (iii)     |                                                                                                                                         | B1         | Correct symmetric W shape with cusps on <i>x</i> -axis                                                       |
|           |                                                                                                                                         | B1         | <i>y</i> -intercept marked at 5 only or coords indicated on graph                                            |
|           | -2.5                                                                                                                                    | B1         | <i>x</i> -intercepts marked at $-2.5$ and $0.5$ only <i>x</i> -axis or coords indicated on graph or close by |
| 7 (i) (a) | <b>q</b> – <b>p</b>                                                                                                                     | B1         |                                                                                                              |
| (b)       | $2\mathbf{q} - 2\mathbf{p}$ or $2(\mathbf{q} - \mathbf{p})$                                                                             | B1         |                                                                                                              |
| (ii)      | The points are collinear oe                                                                                                             | B1         |                                                                                                              |
|           | $\overrightarrow{PQ}$ is a (scalar) multiple of $\overrightarrow{QR}$ and they have a point in common. oe                               | B1         | Condone $\overrightarrow{PQ}$ is parallel to $\overrightarrow{QR}$ and                                       |
| (iii)     | $\left[\overline{OR}=\right]4\mathbf{i}-3\mathbf{j}$ oe soi                                                                             | <b>B</b> 1 |                                                                                                              |
|           | $\sqrt{4^2 + (-3)^2}$ (=5)                                                                                                              | M1         | condone $\sqrt{4^2 + 3^2}$ ; may be implied by correct answer or correct FT answer                           |
|           | $\frac{1}{5}(4\mathbf{i}-3\mathbf{j})$ oe                                                                                               | A1         |                                                                                                              |
| 8 (a) (i) | $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ final answer                                                                                      | B2,1,0     | -1 each error/omission                                                                                       |
| (ii)      | $6(2x)^2 \left(\frac{1}{5x}\right)^2 \text{ soi}$ $\frac{24}{25} \text{ or } 0.96 \text{ isw}$                                          | M1         | Could be in full expansion                                                                                   |
|           | $\frac{24}{25}$ or 0.96 isw                                                                                                             | A1         | Must be explicitly identified                                                                                |
| (b)       | $\frac{1}{8} \left( \frac{n(n-1)(n-2)}{6} \right) = \frac{5n}{12} \text{ soi leading to a}$<br>cubic or quadratic $(n^2 - 3n - 18 = 0)$ | M1         | Must attempt to expand and remove fractions                                                                  |
|           | Solves <i>their</i> quadratic $[(n-6)(n+3)]$                                                                                            | M1         | must have come from a valid attempt                                                                          |
|           | [n=] 6 only, not from wrong working                                                                                                     | A1         | Must be <i>n</i> if labelled                                                                                 |

| Page 5 | Mark Scheme                     | Syllabus | Paper |
|--------|---------------------------------|----------|-------|
|        | Cambridge IGCSE – May/June 2016 | 0606     | 21    |

| Q  | uestion | Answer                                                                                            | Marks        | Guidance                                                                                                                                      |
|----|---------|---------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | (a)     | a=2 $b=4$ $c=-2$                                                                                  | B3           | B1 for each correct value                                                                                                                     |
|    | (b) (i) |                                                                                                   | B3,2,1,<br>0 | sinusoidal curve<br>symmetrical about <i>y</i> -axis<br>clear intent to have amplitude of 2<br>2 cycles<br>If not fully correct max <b>B2</b> |
|    | (ii)    | $-\frac{\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{2}, -\frac{\pi}{3}, \frac{\pi}{3}$ cao | B2           | <b>B1</b> for any 4 correct                                                                                                                   |
| 10 | (a) (i) | $2 \times 4!$ or $\frac{2}{5} \times 5!$ oe                                                       | M1           |                                                                                                                                               |
|    |         | 48                                                                                                | A1           |                                                                                                                                               |
|    | (ii)    | ${}^{5}P_{3}$ or $\frac{5!}{2!}$ or $5 \times 4 \times 3$ oe                                      | M1           |                                                                                                                                               |
|    |         | 60                                                                                                | A1           |                                                                                                                                               |
|    | (b) (i) | $4 \times 2[!] \times 30e$                                                                        | M1           | Correct first step implied by a correct product of two elements                                                                               |
|    |         | 24                                                                                                | A1           |                                                                                                                                               |
|    | (ii)    | 3! or $3 \times 3$ seen                                                                           | M1           |                                                                                                                                               |
|    |         | 18                                                                                                | A1           |                                                                                                                                               |
| 11 | (i)     | $\frac{3x^2}{2} - \frac{2x^{\frac{5}{2}}}{5}(+c)$ isw                                             | B1+B1        |                                                                                                                                               |
|    | (ii)    | (9, 0) oe                                                                                         | B1           | Not just $x = 9$                                                                                                                              |
|    | (iii)   | Substitute (3, 9) into <b>both</b> lines                                                          | B1           | $3 \times 3 = 9$ and $\frac{27 - 3 \times 3}{2} = 9$                                                                                          |
|    |         | Or solves simultaneously $(6x = 27 - 3x \text{ oe})$ to<br>get $x = 3$ , $y = 9$                  |              | 2                                                                                                                                             |

| Ρ | age | e 6 |
|---|-----|-----|
|   |     |     |

## Mark Scheme Cambridge IGCSE – May/June 2016

SyllabusPaper060621

| Question | Answer                                                                                    | Marks | Guidance                                                                                                          |
|----------|-------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------|
| (iv)     | [Area $AOB = ]\frac{1}{2} \times 9 \times 9$ oe $(\frac{81}{2} \text{ or } 40.5)$         | M1    | Uses <i>their</i> (ii). May split into 2<br>triangles (13.5 and 27). May integrate.<br>Must be a complete method. |
|          | their $\left[\frac{3(9)^2}{2} - \frac{2(9)^{\frac{5}{2}}}{5}\right] - [0]$ (= 24.3)       | M1    | lower limit may be omitted but must<br>be correct if seen                                                         |
|          | their $\frac{81}{2}$ - their $\frac{243}{10}$                                             | M1    | must be from genuine attempts at area of triangle and area under curve                                            |
|          | 16.2                                                                                      | A1    |                                                                                                                   |
| 12 (i)   | $\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{2(x-1) - (2x-5)}{(x-1)^2}$          | M1A1  | Allow slips in $\frac{du}{dx}$ and $\frac{dv}{dx}$ but must<br>be explicit.<br>Allow $(x-1)^2 = x^2 - 2x + 1$     |
|          | – 12 isw                                                                                  | B1    |                                                                                                                   |
|          | ALT using $y = \frac{-12x^2 + 14x - 5}{x - 1}$<br>-24x + 14                               | B1    |                                                                                                                   |
|          | $\left[\frac{dy}{dx}\right] = \frac{(x-1)(-24x+14) - (-12x^2 + 14x - 5)}{(x-1)^2}$        | M1    |                                                                                                                   |
|          |                                                                                           | A1FT  | <b>FT</b> on their derivative of 3 term quadratic                                                                 |
| (ii)     | $\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] = \left[k\left(x-1\right)^{-3}\right]$ | M1    | No additional terms                                                                                               |
|          | k = -6 isw                                                                                | A1    |                                                                                                                   |

| Page 7 | Mark Scheme                     | Syllabus | Paper |
|--------|---------------------------------|----------|-------|
|        | Cambridge IGCSE – May/June 2016 | 0606     | 21    |

| Question | Answer                                                                 | Marks | Guidance                                                                      |
|----------|------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------|
| (iii)    | their $\left[\frac{3}{(x-1)^2} - 12\right] = 0$ and find a value for x | M1    | $12 x^{2}-24x + 9 = 0 \text{ oe}$ $(2x - 3)(2x - 1) = 0 \text{ oe}$           |
|          | x = 0.5 and $x = 1.5$                                                  | A1    |                                                                               |
|          | y = 2 and $y = -22$                                                    | A1    | if A0 A0 then A1 for a correct $(x, y)$ pair                                  |
|          | $\frac{-6}{(-0.5)^3} > 0$ therefore min when $x = 0.5$ oe              | B1    | or $\left[\frac{-6}{(-0.5)^3}\right] = 48$ therefore min when $x = 0.5$ oe    |
|          | $\frac{-6}{(0.5)^3} < 0$ therefore max when $x = 1.5$ oe               | B1    | or $\left[\frac{-6}{(0.5)^3}\right] = -48$ therefore max<br>when $x = 1.5$ oe |
|          |                                                                        |       | M1A1 is possible from other methods                                           |