MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3	Mark Scheme	Syllabus Paper		
		IGCSE – October/November	0606 22		
1	(<i>x</i> +	(6)(x-1)	M1	Attempt to solve a three term quadratic	
	Crit	ical values –6 and 1	A1		
	-6	< x < 1	A1Allow $x > -6$ AND $x < 1$ but n[3]or a comma. Mark final answer		
2	(4√	$(\overline{5}-2)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error, must be in the form $a + b\sqrt{5}$.	
	Mu	tiply top and bottom by $\sqrt{5} + 1$	M1	Must be attempt to expand top and bottom.	
	17	$\sqrt{5} + 1$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$	
	Lea	$(\overline{5}-2)^{2} = 80 - 16\sqrt{5} + 4$ (-1) $(p\sqrt{5}+q) = 5p - q + \sqrt{5}(q-p)$ ding to $5p - q = 84, q - p = -16$ 17 $q = 1$	M1 M1 A1 A1	Must get to a pair of simultaneous equations for this mark	
3	(i) $\frac{\mathrm{d}y}{\mathrm{d}k}$ k =	$=k\left(\frac{1}{4}x-5\right)^{7}$ 2	M1 A1 [2]		
	(ii) Use	$\partial y = \frac{dy}{dx} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$\sqrt[4]{}$ on <i>k</i> needs both M marks	
	-25	ux	A1√ [≜] [2]	$\sqrt[n]{}$ only for $-128kp$ and must be evaluated	
4	(i) 10		B1		
	(ii) –5		[1] B1	Not $\log_p 1-5$	
	(iii) log	$_{p}XY = \log_{p}X + \log_{p}Y = 7$	[1] B1	Or $\log_{XY} p = \frac{1}{\log_p XY}$	
	$\frac{1}{7}$		B1√ [^] [2]	Do not allow just $\log_p X + \log_p Y = 7$ \checkmark on $\frac{1}{\log_p XY}$	7

	Page 4	Mark Scheme		Syllabus	Paper
		IGCSE – October/Novembe	0606	22	
5	2. So	-4y = 5 oe x + 2y = 5 oe blue their linear simultaneous equations = 3 or $y = -0.5$	B1 B1 M1 A1,A1√ [№] [5]	Each in two variable quadratic as far as x	
	0. 0. 0. 1. 2.	R from log .602x - 2.408y = 3.01 .954x + 0.954y = 2.386 R from ln .386x - 5.545y = 6.931 .197x + 2.197y = 5.493 inal M1A1A1 $\sqrt[n]{}$ follows as before	B1 B1 B1 B1 B1		
6		$160(x^3)$ isw	B1 B1 [2]	±40 implies ±2×2 hence B1 OK if seen in expans	
	(ii) 6		B 1	Can be implied	
	(i)	$+\frac{1}{2}$ (their 60)	M1		
		$130(x^3)$	A1 [3]		
	(b) 10	$6x^2 + 32x + 24 + \frac{8}{x} + \frac{1}{x^2}$ oe	B3,2,1,0 [3]	Terms must be evalu B2 for 4 terms correc B1 for 2 or 3 terms c ISW once expansion	et. orrect.
7		$=\frac{3500}{x^{2}} = 3 \times 4x + 2x + 2l$	B1 B1	allow $lx^2 = 3500$ RHS 3 terms e.g. 12.	$x + 2x + 2\left(\frac{3500}{x^2}\right)$
		abstitute for <i>l</i> and correctly reach = $14x + \frac{7000}{x^2}$	DB1ag [3]	or better Dependent on both p	revious B marks
		$\frac{L}{lx} = 14 - \frac{14000}{x^3}$ quate $\frac{dL}{dx}$ to 0 and solve	M1A1 DM1	M1 either power red A1 both terms correc Must get $x^n =$	
	x L	=10 = 210	A1	Both values	
	$\frac{d}{d}$	$\frac{x^2 y}{x^2} = \frac{42000}{x^4}$ and minimum stated	B1 [5]	Or use of gradient eit turning point.	ther side of

Page 5		Mark Scheme					Syllabus	Paper	
Ĺ			IGCSE – October/November 2013				0606 22		
8	(i)	x^2					B1 [1]	Implied by axes or v May be seen in (ii)	values in a table.
	(ii)	Plot	$\frac{y}{x}$ again	st x^2 w	vith linea	r scales		Must be linear scale	es
		x^2	4	16	36	64	B1	At least 3 correct po	ints plotted and
		$\frac{y}{x}$	4.8	9.6	17.5	29	B1 [2]	no incorrect points Line must be ruled a least 2 correct point	
	(iii)		gradien 4 ± 0.02				M1	Condone use of corr table/graph to find g	
			$.2 \pm 0.02$	_			A1 B1 [3]	equation. Values rea must be correct.	
	(iv)	Read	$\frac{y}{x} = 12.$	5			M1	Obtaining $(x^2) = 22$	to 24 from graph
		or su	bstitute i	in form	ula			As far as $x^2 = +ve$	constant
		4.8					A1 [2]	4.7 to 4.9 ignore	e –4.8 or 0
9		12vs 12(vo 12vc Solve	s compo in $\alpha = 40$ $\cos \alpha + 1$ $\cos \alpha = 43$ e for v or	$\binom{0}{.8} = 70$ 8.4			M1 A1 A1 M1A1 DM1 A1		
		$\alpha = 3$ $v = 5$					A1 [8]	Allow 0.691 radians	;
		Meth	od B	70	D	→ 40			
			$.8 \times 12 =$		2		B1 B1		
		•	40 - 21.6 $40^2 + 4$		3942.56)		M1		
		D = 0	52.8	,	,		A1		
		$V = \frac{1}{2}$	$\frac{D}{2}$				DM1		
		V = 5	5.23 40				A1	5.23 or better	
		tan a	$c = \frac{1}{48.4}$				M1		
		$\alpha = 3$	39.6°				A1 [8]	Allow 0.691 radian	S

Page 6	Mark Scheme		Syllabus	Paper
	IGCSE – October/November	0606	22	
$v = \frac{1}{2}$ $\tan \delta$ $V^{2} = \frac{1}{2}$ $V = \frac{1}{2}$	$\frac{v}{V}$ $\frac{v}{V}$ $\frac{1.8}{70}$ $\frac{70}{\sqrt{40^2 + 70^2}} (= 80.6)$ $\frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$ $\frac{1.8^2 + 6.72^2 - 2 \times 1.8 \times 6.72 \cos 29.74}{5.23}$	B1 B1 B1 M1 A1	Or $\tan(90-\delta) = \frac{7}{4}$	
$\beta = 9$	$\frac{3}{5} \cdot 8 = \frac{\sin 29.74}{5} \cdot 23$ 9.8(3) or 9.8(2) 29.74 + $\beta = 39.6$	M1 A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians	
Meth	od D			
$z = \sqrt{x}$ $x = 1$ $\tan \delta$ $D^{2} =$	$\frac{z}{D}$ $\frac{b}{21.6}$ $\frac{1}{40^{2} + 70^{2}} (= 80.6)$ $8 \times 12 = 21.6$ $\frac{1}{7} \rightarrow (\delta = 29.74) \text{ oe}$ $(21.6^{2} + 80.6^{2} - 2.21.6.80.6 \cos 29.74)$ $(62.8/12) = 5.23$	B1 B1 B1 M1 A1	This method has extra this point the M mark equation in D but the value of V .	is for an
$\frac{\sin \mu}{21}$	$\frac{3}{6}.6 = \frac{\sin 29.74}{62}.8$			
•	9.8(3) or $9.8(2)29.74 + \beta = 39.6$	A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians	

	Page 7	Mark Scheme	Syllabus Paper	
		IGCSE – October/November	0606 22	
			T	
10		$AB^{2} = 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ 15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$	M1 A1 B1	$AB = 2 \times 12 \sin 0.7$ May be implied May be implied
		Use $s = r\theta(=58.6)$	M1	12×4.9 or better oe
		74.1	A1	
			[5]	
	(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or	M1	May be implied .
		$\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$		
		(Triangle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1	
		Area of major sector + Area of triangle	M1	May be implied
	4	422 or 423	A1	
			[4]	
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3} \mathrm{e}^{\frac{1}{3}x}$	B1	
		$m = \frac{1}{3}e^3$	M1	For insertion of $x = 9$ into
		5		their $\frac{dy}{dx}$. 6.7 or better if correct.
		$y - e^3 = \frac{1}{3}e^3(x - 9)$	DM1	Using their evaluated <i>m</i> to find eqn $y = 6.7x - 40.2$ or better if correct.
		At $O v = 0, x = 6$	A1	Accept value that rounds to 6.0 to 2sf
			[4]	
	(ii) .	Area triangle $1.5e^3$ or 30.1	B1	
		$\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x} \text{ oe}$	B1	
	1	Uses limits of 0 and 9 in integrated function.	M1	\pm must see both values inserted if incorrect answer
		$3e^3 - 3 \text{ or } 57.3$	A1	
		Area under curve subtract area of triangle	M1	
		$1.5e^3 - 3 \text{ or } 27.1$	A1	Condone 27.2 if obtained from
			[6]	57.3 – 30.1.

	Page 8		Mark Scheme	Syllabus	Paper	
			IGCSE – October/Novemb	er 2013	0606	22
12	(a)	cosed	$x = \frac{1}{\sin x}$ inserted into equation	B1		
		tan x	$=-\frac{2}{7}$	DB1		
		164.1 344.1		B1 B1√ [*]	One correct value. \checkmark on $180 + (164.1)$ M $\tan x =$ Condone164 and 344	1
	(b) $(2y-1) = 0.79or 2.34$ Find y using radians 0.898 (or 0.9 or 0.90) 1.67, 4.04 and $4.81(45)$			[4] B1 M1 A1 A1 A1 A1 [5]	Deduct 1 mark for ex Allow 0.8 , 2.3 or 45 Add 1 then divide by angle One correct value Another correct valu Final two values Deduct 1 mark for ex	.6° 2 on a correct e