MARK SCHEME for the October／November 2014 series

0606 ADDITIONAL MATHEMATICS

0606／11 Paper 1，maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

1	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{16}{x^{2}} \\ & \text { When } \frac{\mathrm{d} y}{\mathrm{~d} x}=0, \\ & x=2, y=12 \end{aligned}$	M1 A1 DM1 A1	for attempt to differentiate all correct for equating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and an attempt to solve for x. A1 for both, but no extra solutions
2 (a) (b) (i) (ii)		B1 B1 B1 B1 B1	for correct shape for max value of 2 , starting at $(0,2)$ and finishing at $\left(180^{\circ}, 2\right)$ for min value of -4 must be positive
3 (i) (ii)	$\begin{aligned} & y=4(x+3)^{\frac{1}{2}}(+c) \\ & 10=4\left(9^{\frac{1}{2}}\right)+c \\ & c=-2 \\ & y=4(x+3)^{\frac{1}{2}}-2 \\ & 6=4(x+3)^{\frac{1}{2}}-2 \\ & x=1 \end{aligned}$	M1, A1 M1 A1 A1 ft	M1 for $(x+3)^{\frac{1}{2}}, \mathbf{A 1}$ for $4(x+3)^{\frac{1}{2}}$ for a correct attempt to find c, but must be from an attempt to integrate Allow A1 for $c=-2$ ft for substitution into their equation to obtain x; must have the first M1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

4 (i) (ii)	$\begin{aligned} & 5 y^{2}-7 y+2=0 \\ & (5 y-2)(y-1)=0 \\ & y=\frac{2}{5}, x=\frac{\ln 0.4}{\ln 5} \\ & x=-0.569 \\ & y=1, x=0 \end{aligned}$	B1, B1 M1 M1 A1 B1	B1 for 5, B1 for -7 for solution of quadratic equation from (i) for use of logarithms to solve equation of the type $5^{x}=k$ must be evaluated to 3 sf or better
5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-\frac{1}{x}$ When $x=1, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ Tangent: $y-1=2(x-1)$ $(y=2 x-1)$ Mid-point $(5,9)$ $9=2(5)-1$ Alternative Method: Tangent equation $y=2 x-1$ Equation of line joining $(-2,16)$ and $(12,2)$ $y=-x+14$ Solve simultaneously $x=5, y=9$ Mid-point $(5,9)$	M1 B1 DM1 A1 B1 B1 B1 B1	for attempt to differentiate for $y=1$ for attempt to find equation of tangent allow equation unsimplified for midpoint from given coordinates for checking the mid-point lies on tangent for a complete method to find the coordinates of the point of intersection for midpoint from given coordinates
6 (i) (ii)	$\begin{aligned} & (2+p x)^{6}=64+192 p x+240 p^{2} x^{2} \ldots \\ & 240 p^{2}=60 \\ & p=\frac{1}{2} \\ & (3-x)\left(64+192 p x+240 p^{2} x^{2} \ldots\right) \\ & \text { Coefficient of } x^{2} \text { is } 180-192 p \\ & =84 \end{aligned}$	B1 M1 A1 B1 ft M1 A1	for $240 p^{2}$ or $240 p^{2} x^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times(p x)^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times p^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times p^{2} x^{2}$ for equating their term in x^{2} to 60 and attempt to solve ft for $192 p, 96$ or $192 \times$ their p for $180-192 p$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

$7 \quad \text { (i) }$ (ii)	$\begin{aligned} & \mathbf{A}^{-1}=\frac{1}{5 a b}\left(\begin{array}{cc} b & -2 b \\ a & 3 a \end{array}\right) \\ & \mathbf{X}=\mathbf{B A}^{-1} \\ & =\left(\begin{array}{cc} -a & b \\ 2 a & 2 b \end{array}\right)\left(\begin{array}{cc} \frac{1}{5 a} & -\frac{2}{5 a} \\ \frac{1}{5 b} & \frac{3}{5 b} \end{array}\right) \\ & =\left(\begin{array}{cc} 0 & 1 \\ \frac{4}{5} & \frac{2}{5} \end{array}\right) \end{aligned}$	B1, B1 M1 DM1 A1 A1	$\mathbf{B 1}$ for $\frac{1}{5 a b}, \mathbf{B 1}$ for $\left(\begin{array}{cc}b & -2 b \\ a & 3 a\end{array}\right)$ for post-multiplication by inverse matrix for correct attempt at matrix multiplication, needs at least one term correct for their BA^{-1} (allow unsimplified) for each correct pair of elements, must be simplified
8 (i) (ii) (iii)	$\begin{equation*} \overrightarrow{A B}=\binom{12}{16}, \text { at } P, x=-2+\frac{1}{4} \tag{12} \end{equation*}$ so at $P, x=1$ $y=3+\frac{1}{4}(16), y=7$ Gradient of $A B=\frac{16}{12}$, so perp gradient $=-\frac{3}{4}$ Perp line: $\begin{aligned} & y-7=-\frac{3}{4}(x-1) \\ & (3 x+4 y=31) \end{aligned}$ $Q\left(0, \frac{31}{4}\right)$ Area $A Q B=12.5$	B1 B1 M1 M1 A1 B1 ft M1 A1	for convincing argument for $x=1$ for $y=7$ for finding gradient of perpendicular for equation of perpendicular through their P Allow unsimplified ft on their perpendicular line, may be implied for any valid method of finding the area of the correct triangle, allow use of their Q; must be in the form $(0, q)$.

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

9 (i)	$\log y=\log a+x \log b$						B1	for the statement, may be seen or implied in later work,
	x	2	2.5	3	3.5	4		
	$\lg y$	1.27	1.47	1.67	1.87	2.07		
		2	2.5	3	3.5	4		
	$\ln y$	2.93	3.39	3.84	4.31	4.76		
	$\log y$						M1	for attempt to draw graph of x against $\log y$
							A2,1,0	-1 each error in points plotted
(ii)	$\begin{aligned} & \text { Gradient }=\log b \\ & \lg b=0.4 \text { or } \ln b=0.92 \end{aligned}$						DM1	for attempt to find gradient and equate it to $\log b$, dependent on M1 in (i)
	$\begin{aligned} & \text { Intercept }=\log a \\ & \lg a=0.47 \text { or } \ln a=1.10 \end{aligned}$						DM1	for attempt to equate y-intercept to $\log a$ or use their equation with their gradient and a point on the line, dependent on M1 in (i)
	$a=3$ (allow 2.8 to 3.2)						A1	
	Alternative method: Simultaneous equations may be used provided points that are on the plotted straight line are used.						DM1 DM1	for a pair of equations using points on the line, dependent on M1 in (i) for solution of these equations, dependent on M1 in (i)
	$a=3(\text { allow } 2.8 \text { to } 3.2)$						$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	A1 for each

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

(a) (i) (ii) (iii) (b) (i) (ii)	360 60 36 ${ }^{8} C_{5} \times{ }^{12} C_{5}$ $56 \times 792=44352$ 4 places are accounted for Gender no longer 'important' Need ${ }^{16} C_{6}=8008$ Alternative Method $\begin{aligned} & \left({ }^{6} C_{6} \times{ }^{10} C_{0}\right)+\left({ }^{6} C_{5} \times{ }^{10} C_{1}\right) \ldots\left({ }^{6} C_{0} \times{ }^{10} C_{6}\right) \\ & 1+60+675+2400+3150+1512+210=8008 \end{aligned}$		B1 for each, allow unevaluated with no extra terms Final answer must be evaluated and from multiplication for realising that 4 places are accounted or that gender is no longer important for 8008 for at least 5 of the 7 cases, allow unsimplified
11 (a)	$\begin{aligned} & 2 \cos 3 x-\frac{\cos 3 x}{\sin 3 x}=0 \\ & \cos 3 x\left(2-\frac{1}{\sin 3 x}\right)=0 \end{aligned}$ Leading to $\cos 3 x=0,3 x=90^{\circ}, 270^{\circ}$ $x=30^{\circ}, 90^{\circ}$ and $\quad \sin 3 x=\frac{1}{2}, 3 x=30^{\circ}, 150^{\circ}$ $x=10^{\circ}, 50^{\circ}$ $\begin{aligned} & \cos \left(y+\frac{\pi}{2}\right)=-\frac{1}{2} \\ & y+\frac{\pi}{2}=\frac{2 \pi}{3}, \frac{4 \pi}{3} \end{aligned}$ so $y=\frac{\pi}{6}, \frac{5 \pi}{6}(0.524,2.62)$	DM1 A1 DM1 A1 M1 DM1 A1, A1	for use of $\cot 3 x=\frac{\cos 3 x}{\sin 3 x}$, may be implied for attempt to solve $\cos 3 x=0$ correctly from correct factorisation to obtain x A1 for both, no excess solutions in the range for attempt to solve $\sin 3 x=\frac{1}{2}$ correctly to obtain x A1 for both, condone excess solutions for dealing with $\sec \left(y+\frac{\pi}{2}\right)$ correctly for correct order of operations, must not mix degrees and radians

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

12 (i)	$\overrightarrow{A Q}=\lambda \mathbf{b}-\mathbf{a}$	B1	
(ii)	$\overrightarrow{B P}=\mu \mathbf{a}-\mathbf{b}$	B1	
(iii)	$\overrightarrow{O R}=\mathbf{a}+\frac{1}{3}(\lambda \mathbf{b}-\mathbf{a}) \text { or } \lambda \mathbf{b}-\frac{2}{3}(\lambda \mathbf{b}-\mathbf{a})$	M1	$\text { for } \mathbf{a}+\frac{1}{3} \text { their } \mathbf{(i)}$
	$=\frac{2}{3} \mathbf{a}+\frac{1}{3} \lambda \mathbf{b}$	A1	Allow unsimplified
(iv)	$\overrightarrow{O R}=\mathbf{b}+\frac{7}{8}(\mu \mathbf{a}-\mathbf{b}) \text { or } \mu \mathbf{a}-\frac{1}{8}(\mu \mathbf{a}-\mathbf{b})$	M1	for $\mathbf{b}+\frac{7}{8}$ their (ii)
	$=\frac{1}{8} \mathbf{b}+\frac{7}{8} \mu \mathbf{a}$	A1	Allow unsimplified
(v)	$\frac{2}{3} \mathbf{a}+\frac{1}{3} \lambda \mathbf{b}=\frac{1}{8} \mathbf{b}+\frac{7}{8} \mu \mathbf{a}$	M1	for equating (iii) and (iv) and then
	$\frac{2}{3}=\frac{7}{8} \mu, \mu=\frac{16}{21} \quad \text { Allow } 0.762$	A1	
	$\frac{1}{3} \lambda=\frac{1}{8}, \lambda=\frac{3}{8} \quad$ Allow 0.375	A1	

