MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®] components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme Cambridge IGCSE – March 2015			Syllabus	Paper
				0606	12
1 (i)	Members who play football or cricket , or both	B1			
(ii)	Members who do not play tennis	B1			
(iii)	There are no members who play both football and tennis	B1			
(iv)	There are 10 members who play both cricket and tennis.	B1			
2	$kx - 3 = 2x^{2} - 3x + k$ $2x^{2} - x(k+3) + (k+3) = 0$ Using $b^{2} - 4ac$,	M1	for attempt to obtain a 3 term quadratic equation in terms of x		
	$(k+3)^2 - (4 \times 2 \times (k+3))$ (< 0)	DM1	for use of <i>i</i>	$b^2 - 4ac$	
	$(k+3)^{(k+3)}(k-3)(k-5)$ (< 0)	DM1	for attempt to solve quadratic equation, dependent on both previous M marks		
	Critical values $k = -3, 5$ so $-3 < k < 5$	A1 A1	for both cri for correct	itical values range	
3 (i)		B1 B1 B1	for shape, 1 the correct for y interc for x interc	ept	ne <i>x</i> -axis in
(ii)	$4-5x = \pm 9$ or $(4-5x)^2 = 81$	M1	·	to obtain 2 s complete met	
	leading to $x = -1$, $x = \frac{13}{5}$	A1, A1	A1 for eacl	h	
4 (i)	$729 + 2916x + 4860x^2$	B1,B1 B1	B1 for each	n correct tern	n
(ii)	$2 \times their 4860 - their 2916 = 6804$	M1 A1	for attempt shown	at 2 terms, r	nust be as

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

5 (i)	gradient = 4 Using either (2, 1) or (3, 5), $c = -7$	B1 M1	for gradient, seen or implied for attempt at straight line equation to obtain a value for c	
	$e^{y} = 4x + c$ so $y = \ln(4x - 7)$	M1,A1	for correct method to deal with e^y	
	Alternative method:			
	$\frac{y-1}{5-1} = \frac{x-2}{3-2}$ or equivalent	M1	for attempt at straight line equation using both points	
		A1	allow correct unsimplified for correct method to deal with e^y	
	$e^{y} = 4x - 7$ so $y = \ln(4x - 7)$	M1 A1	for correct method to dear with e	
(ii)	$x > \frac{7}{4}$	B1ft	ft on <i>their</i> $4x - 7$	
(iii)	$\ln 6 = \ln(4x - 7)$ so $x = \frac{13}{4}$			
	so $x = \frac{13}{4}$	B1ft	ft on their $4x - 7$	
6 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x(2\sec^2 2x) - \tan 2x}{x^2}$	M1	for attempt to differentiate a	
		A2,1,0	quotient (or product) -1 each error	
	Or $\frac{dy}{dx} = x^{-1} (2 \sec^2 2x) + (-x^{-2}) \tan 2x$			
(ii)	When $x = \frac{\pi}{8}$, $y = \frac{8}{\pi}$ (2.546)	B 1	for <i>y</i> -coordinate (allow 2.55)	
	When $x = \frac{\pi}{8}$, $\frac{dy}{dx} = \frac{\frac{\pi}{2} - 1}{\pi^2}$			
	$=\frac{32}{\pi} - \frac{64}{\pi^2} (3.701)$			
	Equation of the normal:			
	$y - \frac{8}{\pi} = -\frac{\pi^2}{32(\pi - 2)} \left(x - \frac{\pi}{8}\right)$	M1	for an attempt at the normal, must be working with a perpendicular gradient	
	y = -0.27x + 2.65 (allow 2.66)	A1	allow in unsimplified form in terms of π or simplified decimal form	

	Page 4	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – March 2015			0606 12		
					1		
7	(i)	$p\left(\frac{1}{2}\right):\frac{a}{8}+\frac{b}{4}-\frac{3}{2}-4=0$	M1	for correct use of $x = \frac{1}{2}$			
		Simplifies to $a + 2b = 44$	2.54	C (C C	,	
		p(-2): -8a + 4b + 6 - 4 = -10	M1 DM1		use of $x = -2$		
		Simplifies to $2a - b = 3$ oe Leads to $a = 10, b = 17$	A1		n of equations e careful as A		
				for both, be careful as AG for <i>a</i> , allow verification			
	(ii)	$p(x) = 10x^3 + 17x^2 - 3x - 4$	B2,1,0	-1 each em	ror		
		$= (2x-1)(5x^2+11x+4)$					
	/ ···	1	D1				
	(iii)	$x = \frac{1}{2}$	B 1				
		$x = \frac{-11 \pm \sqrt{41}}{10}$	B1, B1				
8	(a) (i)	Range $0 \le y \le 1$	B 1				
	(ii)	Any suitable domain to give a one-one function	B1	e.g. $0 \le x$	$\leq \frac{\pi}{4}$		
	(b) (i)	$y = 2 + 4 \ln x \text{oe}$	M1	for a comp inverse	lete method t	o find the	
		$\ln x = \frac{y-2}{4} \text{oe}$					
		$g^{-1}(x) = e^{\frac{x-2}{4}}$	A1	must be in	the correct for	orm	
		Domain $x \in$	B1				
		Range $y > 0$	B 1				
	(ii)	$g(x^2+4)=10$	M1	for correct	order		
		$2 + 4\ln(x^2 + 4) = 10$	DM1	for attempt	t to solve		
		leading to $x = 1.84$ only	A1	for one sol	ution only		
		Alternative method:					
		$h(x) = x^2 + 4 = g^{-1}(10)$	M1	for correct	order		
		$g^{-1}(10) = e^2$, so $x^2 + 4 = e^2$	DM1	for attempt	t to solve		
		leading to $x = 1.84$ only	A1	for one sol	ution only		
	(iii)	$\frac{4}{x} = 2x$	B 1	-	equation, allow	w in this	
		$x^{2} = 2$	M1	form for attempt	t to solve mu	st he using	
				for attempt to solve, must be using derivatives			
		$x = \sqrt{2}$	A1	for one sol better.	ution only, al	low 1.41 or	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

9 (i) Area of triangular face $=\frac{1}{2}x^2\frac{\sqrt{3}}{2}=\frac{\sqrt{3}x^2}{4}$ B1	for area of triangular face
Volume of prism = $\frac{\sqrt{3}x^2}{4} \times y$ M1	for attempt at volume <i>their</i> area $\times y$
$\frac{\sqrt{3}x^2}{4} \times y = 200\sqrt{3}$	
so $x^2 y = 800$ $A = 2 \times \frac{\sqrt{3}x^2}{4} + 2xy$ M1	for correct relationship between <i>x</i>
$A = 2 \times \frac{\sqrt{3x^2}}{4} + 2xy $ M1	and <i>y</i> for a correct attempt to obtain surface area using <i>their</i> area of
leading to $A = \frac{\sqrt{3}x^2}{2} + \frac{1600}{x}$ A1	triangular face for eliminating <i>y</i> correctly to obtain given answer
(ii) $\frac{\mathrm{d}A}{\mathrm{d}x} = \sqrt{3}x - \frac{1600}{x^2}$ M1	for attempt to differentiate
When $\frac{dA}{dx} = 0$, $x^3 = \frac{1600}{\sqrt{3}}$ M1	dx
x = 9.74 A1	to solve for correct x
so $A = 246$ A1	for correct A
$\frac{d^2 A}{dx} = \sqrt{3} + \frac{3200}{x^3}$ which is positive for M1	for attempt at second derivative and
x = 9.74 so the value is a minimum A1f	conclusion, or alternate methodsft for a correct conclusion from
	completely correct work, follow through on <i>their</i> positive <i>x</i> value.
10 (i) $\tan \theta = \frac{1 + 2\sqrt{5}}{6 + 3\sqrt{5}} \times \frac{6 - 3\sqrt{5}}{6 - 3\sqrt{5}}$ M1	for attempt at $\cot \theta$ together with
$=\frac{6+3\sqrt{5}}{6-3\sqrt{5}}$ $=\frac{6-3\sqrt{5}+12\sqrt{5}-30}{36-45}$	rationalisation Must be convinced that a calculator
	is not being used.
$=\frac{8}{3}-\sqrt{5}$ A1, A	A1 A1 for each term
(ii) $\tan^2 \theta + 1 = \sec^2 \theta$ M1	for attempt to use the correct identity or correct use of
$\frac{64}{9} - \frac{16\sqrt{5}}{3} + 5 + 1 = \csc^2 \theta$	Pythagoras' theorem together with <i>their</i> answer to (i) Must be convinced that a calculator
	is not being used.
so $\csc^2 \theta = \frac{118}{9} - \frac{16\sqrt{5}}{3}$ A1, A	A1 A1 for each term
Alternate solutions are acceptable	

Page 6	Mark Scheme	Syllabus Paper		
	Cambridge IGCSE – March 2	0606 12		
			1	
11 (a) (i)	LHS = $\frac{\frac{1}{\sin y}}{\frac{\cos y}{\sin y} + \frac{\sin y}{\cos y}}$	M1	for dealing with cosec, cot and ta in terms of sin and cos	
	$=\frac{\frac{1}{\sin y}}{\frac{\cos^2 y + \sin^2 y}{\sin y \cos y}}$	M1	for use of $\sin^2 y + \cos^2 y = 1$	
	$= \frac{1}{\sin y} \times \sin y \cos y$ $= \cos y$	A1	for correct simplification to get the required result.	
(ii)	$\cos 3z = 0.5$ $3z = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$	M1	for use of (i) and correct attempt to deal with multiple angle	
	$z = \frac{\pi}{9}, \ \frac{5\pi}{9}, \ \frac{7\pi}{9}$	A1, A1	A1 for each 'pair' of solutions	
(b)	$2\sin x + 8(1 - \sin^2 x) = 5$	M1	for use of correct identity	
	$8\sin^{2} x - 2\sin x - 3 = 0$ (4 sin x - 3)(2 sin x + 1) = 0 sin x = $\frac{3}{4}$, sin x = $-\frac{1}{2}$	M1	for attempt to solve quadratic equation	
	$\sin x = \frac{1}{4}$, $\sin x = -\frac{1}{2}$ $x = 48.6^{\circ}$, 131.4° 210°, 330°	A1, A1	A1 for each pair of solutions	