MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2 (Paper 22), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	22

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
1 (i) \\
(ii) \\
(iii)
\end{tabular} \& \& B1
B1

B2 \& | or 2π |
| :--- |
| Correct symmetrical shape; one cycle; both maximums at 1 and minimum at -7 |

\hline | 2 (a) (i) |
| :--- |
| (ii) |
| (b) | \& \[

$$
\begin{aligned}
& \left({ }^{9} C_{3}=\right) 84 \\
& \left({ }^{9} P_{5}=\right) 15120 \\
& \frac{2}{6} \times 6!\text { or } 5!+5!\mathrm{oe} \\
& 240
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 | \& or clear indication of method

\hline 3 \& | Eliminate x or y |
| :--- |
| $3 x^{2}+2 x-8=0$ or $12 y^{2}-44 y+32=0$ oe |
| Factorise 3 term quadratic oe |
| $x=\frac{4}{3}$ and -2 |
| $y=\frac{8}{3}$ and 1 | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 | \& | correct method |
| :--- |
| Or allow A1 A1 for each (x, y) pair |
| If second M0 then SC1 for one (x, y) pair found by inspection i.e. with no method or with no incorrect method shown |

\hline
\end{tabular}

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	22

4 (i) (ii)	$\begin{aligned} & \sin x(\text { their }(-\sin x))+\cos x(\text { their } \cos x) \\ & -\sin ^{2} x+\cos ^{2} x \text { oe } \\ & 1-2 \sin ^{2} x \text { oe } \\ & \int\left(1-2 \sin ^{2} x\right) \mathrm{d} x=\sin x \cos x(+c) \\ & -2 \int \sin ^{2} x \mathrm{~d} x=\sin x \cos x-\int 1 \mathrm{~d} x \\ & \frac{x}{2}-\frac{1}{2} \sin x \cos x[+c] \text { oe isw } \end{aligned}$	M1 A1 A1 M1 M1 A1	clearly applies correct form of product rule If M1 A0 A0 then allow SC1 for $\sin ^{2} x-\cos ^{2} x=2 \sin ^{2} x-1$ or $\begin{aligned} & \int \sin ^{2} x \mathrm{~d} x=\frac{1}{-2}\left(\int\left(-2 \sin ^{2} x+1\right) \mathrm{d} x-\int 1 \mathrm{~d} x\right) \mathrm{oe} \\ & \int \sin ^{2} x \mathrm{~d} x=\frac{1}{-2} \sin x \cos x-\frac{1}{-2} \int 1 \mathrm{~d} x \end{aligned}$
5 (i) (ii) (iii)	$\begin{aligned} & 6 \mathbf{i}+2 \mathbf{j}-(-2 \mathbf{i}+17 \mathbf{j}) \\ & =8 \mathbf{i}-15 \mathbf{j} \\ & \sqrt{\text { their } 8^{2}+\text { their }(-15)^{2}} \\ & \text { their }(8 \mathbf{i}-15 \mathbf{j}) \\ & \text { their1 } \\ & -2 \mathbf{i}+17 \mathbf{j}+m(6 \mathbf{i}+2 \mathbf{j}) \text { leading to } \\ & 17+2 m=0 \\ & m=-8.5 \text { oe } \\ & -53 \mathbf{i} \end{aligned}$	B1 M1 A1ft M1 M1 A1	ft their $\overrightarrow{A B}$ If M0, allow SC1 for $6 m-2=0$ leading to $\frac{53}{3}$ j
$6 \quad \text { (i) }$ (ii)	$15 \pi=20 \theta$ $\theta=\frac{3}{4} \pi$ or exact equivalent form isw Sector plus triangle approach: Area sector $=\frac{1}{2} \times 20^{2} \times\left(\right.$ their $\left.\frac{3}{4} \pi\right)$ soi Area triangle $=\frac{1}{2} \times 20^{2} \times \sin \left(\right.$ their $\left.\frac{1}{4} \pi\right)$ soi their sector area + their triangle area 613 or $612.6(60254 \ldots)$ rot to 4 sig figs	M1 A1 B1 B1 M1 A1	Semicircle less segment approach: Area sector $=\frac{1}{2} \times 20^{2} \times\left(\right.$ their $\left.\frac{1}{4} \pi\right)$ soi $\frac{\pi(20)^{2}}{2}$ - (their area sector - their area triangle) soi

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	22

$7 \quad$ (i) (ii) (iii) (iv)	$\begin{aligned} & \mathbf{A}^{2}=\left(\begin{array}{ll} -14 & 45 \\ -27 & 85 \end{array}\right) \text { seen } \\ & \left(\begin{array}{ll} -11 & 50 \\ -23 & 95 \end{array}\right) \end{aligned}$ 10 $\frac{1}{\text { their } 10}$ or $\left(\begin{array}{cc}10 & -5 \\ -4 & 3\end{array}\right)$ oe, seen $\frac{1}{10}\left(\begin{array}{cc}10 & -5 \\ -4 & 3\end{array}\right)$ oe isw $\mathbf{X}=\mathbf{B}^{-1} \mathbf{A}$ soi $\left(\begin{array}{cc}0.5 & 0 \\ -0.5 & 1\end{array}\right)$ oe	M1 A1 B1 B1 B1 M1 A1ft	condone one error ft their \mathbf{B}^{-1}
(i) (ii) (iii) (iv)	$(4,2)$ $\begin{aligned} & m_{A B}=\frac{3}{2} \Rightarrow m_{\text {Perp }}=-\frac{2}{3} \\ & y-2=-\frac{2}{3}(x-4) \mathrm{oe} \\ & 2 x+3 y=14 \end{aligned}$ $m_{A B}$ used $y+2=\text { their } m_{A B}(x-10)$ $(10-6)^{2}+(5-(-2))^{2}$ oe $\sqrt{65}$ or $8.0622577 \ldots$ rot to 3 or more sf $A C^{2}=(2-10)^{2}+(-1-(-2))^{2}$ and $A C^{2}=B C^{2}=65$ or showing C lies on the perpendicular bisector of $A B$ or showing line from C to $(4,2)$ is perpendicular to $A B$	B1 M1 M1 A1 M1 A1ft M1 A1 B1	allow unsimplified allow arithmetic slips provided method is correct ft their mid-point and perpendicular gradient allow any correct equivalent form with integer a, b, c any valid method any valid method

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	22

9 (i)	$k(2 x+1)^{-3}$	M1	
	$-8(2 x+1)^{-3} \times 2$ oe	A1	
	+2	B1	
	their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and solves	M1	
	$x=\frac{1}{2}, y=2$	A1	
(ii)	$y=4 \times \frac{1}{2}=2$	B1	or equivalent correct method
(iii)	$\int\left(\frac{4}{(2 x+1)^{2}}+2 x\right) \mathrm{d} x$	M1	Alternative method: M1 for $\int\left(\frac{4}{(2 x+1)^{2}}+2 x-4 x\right) \mathrm{d} x$
	$4 \times \frac{(2 x+1)^{-1}}{-2}+\frac{2 x^{2}}{2}$ or better	A1	A1 for $4 \times \frac{(2 x+1)^{-1}}{-2}+\frac{2 x^{2}}{2}-2 x^{2}$ or better
	$\left[\text { their }\left(4 \times \frac{(2 x+1)^{-1}}{-2}+\frac{2 x^{2}}{2}\right)\right]_{0}^{\text {their } 0.5}$	M1	M1 for $\left[\text { their }\left(4 \times \frac{(2 x+1)^{-1}}{-2}-\frac{2 x^{2}}{2}\right)\right]_{0}^{\text {the }}$
	Substitution of correct limits seen, leading to $1 \frac{1}{4}$	A1	M1 for subst of their limits into their genuine attempt at an integral
	$\text { Shaded area }=\text { their } 1 \frac{1}{4}-\text { their } \frac{1}{2}$	M1	A1 for subst of correct limits into correct expression $\underline{3}$
	$\frac{3}{4}$	A1	A1 for for $\frac{-}{4}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	22

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	22

