MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Guidance
1	$\begin{aligned} & a x+9=-2 x^{2}+3 x+1 \\ & 2 x^{2}+(a-3) x+8=0 \end{aligned}$ For 2 distinct roots, $(a-3)^{2}>64$ Critical values -5 and 11 $a>11, \quad a<-5$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	for attempt to equate the line and the curve and obtain a 3 term quadratic equation for use of the discriminant for critical values for correct range
2	$a=-\frac{13}{6}, b=0, c=1$	B3	B1 for each
3	$\begin{aligned} & \log _{5} \sqrt{x}+\log _{25} x=3 \\ & \frac{1}{2} \log _{5} x+\frac{\log _{5} x}{\log _{5} 25}=3 \\ & \log _{5} x=3 \\ & x=125 \text { cao } \end{aligned}$ Alternative scheme: $\begin{aligned} & \frac{\log _{25} \sqrt{x}}{\log _{25} 5}+\log _{25} x=3 \\ & \frac{\frac{1}{2} \log _{25} x}{\log _{25} 5}+\log _{25} x=3 \\ & \log _{25} x=\frac{3}{2} \\ & x=125 \text { сао } \end{aligned}$	B1,B1 B1 B1 B1 B1	B1 for $\frac{1}{2} \log _{5} x$ B1 for $\frac{\log _{5} x}{\log _{5} 25}$ for final answer for change of base for $\frac{1}{2} \log _{25} x$ (must be from correct work) for final answer

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Question	Answer	Marks	Guidance
4 (i) (ii)	 $2-x=3+2 x$ leading to $x=-\frac{1}{3}$ $2-x=-3-2 x$ leading to $x=-5$ Alternative: $(2-x)^{2}=(3+4 x)^{2}$ leading to $15 x^{2}+28 x+5=0$ $x=-\frac{1}{3}, x=-5$	B1 B1 B1 B1 B1 M1 A1 M1 A1,A1	for a line in correct position for $(0,2),(2,0)$ for correct shape for $y=\|3+2 x\|$, touching the x-axis for $(-1.5,0),(0,3)$ for $x=-\frac{1}{3}$ for correct attempt to deal with 'negative' branch. for $x=-5$ for equating and squaring to obtain a 3 term quadratic equation A1 for each.
5 (a) (i) (ii) (iii) (b) (i) (ii)	$\begin{aligned} & { }^{9} P_{6}=60480 \\ & { }^{4} P_{2} \times{ }^{3} P_{2} \times 2=144 \\ & \\ & 840 \times 2 \\ & 1680 \\ & { }^{10} C_{6} \times{ }^{5} C_{3} \\ & 2100 \\ & { }^{8} C_{4} \times{ }^{4} C_{2} \\ & 420 \end{aligned}$	B1 M1,A1 B1,B1 M1 A1 M1 A1	Must be evaluated M1 for attempt a product of 3 perms B1 for either 840, or realising that there are 2 possible positions for the symbols for unsimplified form for unsimplified form
(ii) (iii) (iv)	$\begin{align*} & \mathrm{f}(x)>6 \tag{i}\\ & \mathrm{f}^{-1}(x)=\frac{1}{4} \ln (x-6) \end{align*}$ Domain: $x>6$ Range: $\mathrm{f}^{-1}(x) \in \mathbb{R}$ $\mathrm{f}^{\prime}(x)=4 \mathrm{e}^{4 x}$ $6+\mathrm{e}^{4 x}=4 \mathrm{e}^{4 x}$ leading to $x=\frac{1}{4} \ln 2$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow B1 for $y>6$ for a complete method must be $\mathrm{f}^{-1}(x)=$ or $y=\ldots$ must be using the correct variable in both for a complete, correct method

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Question	Answer	Marks	Guidance
$7 \quad$ (i) (ii) (iii)	$\begin{aligned} & \mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{7}{4}-\frac{9}{2}+b \quad(=0) \\ & a+8 b=22 \\ & 8 a+28-18+b=5(-a+7+9+b) \\ & 13 a-4 b=70 \end{aligned}$ leading to $a=6, b=2$ $\begin{aligned} & (2 x-1)\left(3 x^{2}+5 x-2\right) \\ & (2 x-1)(3 x-1)(x+2) \end{aligned}$	M1 M1 DM1 A1 B2,1,0 M1 A1FT	for attempt at $\mathrm{f}\left(\frac{1}{2}\right)$ for attempt at $\mathrm{f}(2)=5 \mathrm{f}(-1)$ Allow if the 'wrong way' round for attempt to solve simultaneous equations A1 for both -1 each error for attempt to factorise their quadratic factor must be 3 linear factors
8 (i) (ii) (iii)	$\begin{aligned} & \lg y=\lg A+b \lg x \\ & \text { Gradient }=1.2 \\ & \text { so } b=1.2 \\ & \text { Intercept }=1.44 \\ & A=27.5 \\ & \text { when } x=100, \lg x=2 \\ & \lg y=3.84 \text { (allow } 3.8 \text { to } 3.9 \text {) } \\ & \text { when } y=8000, \lg 8000=3.9, \lg x=2.05 \\ & \text { leading to } x=113,10^{2.05} \text { or } 112 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	may be implied by later work for attempt at gradient for $b=1.2$ for attempt to find y-intercept for, allow awrt 28 for correct use of graph or equation for correct use of graph or equation

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Question	Answer	Marks	Guidance
9 (i) (ii) (iii) (iv)		M1 A1 M1 A1 B1,B1 B1 B1,B1 B1	for a valid method allow in degrees for valid method Must show enough accuracy to get A1 B1 for arc length, B1 for twice $A C$ for 11.6 B1 for area of quadrilateral, allow unsimplified, B1 for sector area for area in given range
(i) (ii) (iii)	$x \times \frac{3}{2} \times 2(2 x-1)^{\frac{1}{2}}+(2 x-1)^{\frac{3}{2}}$ $\begin{aligned} 3 \int x(2 x-1)^{\frac{1}{2}} \mathrm{~d} x & =x(2 x-1)^{\frac{3}{2}}-\int(2 x-1)^{\frac{3}{2}} \mathrm{~d} x \\ & =x(2 x-1)^{\frac{3}{2}}-\frac{1}{2} \times \frac{2}{5}(2 x-1)^{\frac{5}{2}} \end{aligned}$ $\begin{aligned} & \int x(2 x-1)^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{3}(2 x-1)^{\frac{3}{2}}\left(x-\frac{1}{5}(2 x-1)\right) \\ &=\frac{(2 x-1)^{\frac{3}{2}}}{15}(3 x+1) \\ &\left(\frac{1}{15} \times 4\right)-0 \end{aligned}$	B1 M1 A1 M1 B1,B1 M1 DM1 A1 M1 A1FT	for $\frac{3}{2} \times 2(2 x-1)^{\frac{1}{2}}$ for attempt at differentiation of a product for all else correct for attempt to use part (i) B1 for $x(2 x-1)^{\frac{3}{2}}$, allow if divided by 3 B1 for $\frac{1}{2} \times \frac{2}{5}(2 x-1)^{\frac{5}{2}}$, allow if divided by 3 for taking out a common factor of $(2 x-1)^{\frac{3}{2}}$ for attempt to obtain a linear factor for attempt to use limits correctly FT on their $\frac{p x+q}{15}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Question	Answer	Marks	Guidance
11 (i)	$\begin{aligned} \frac{1}{\operatorname{cosec} \theta-1}-\frac{1}{\operatorname{cosec} \theta+1} & =\frac{\operatorname{cosec} \theta+1-\operatorname{cosec} \theta+1}{\operatorname{cosec}^{2} \theta-1} \\ & =\frac{2}{\cot ^{2} \theta} \\ & =2 \tan ^{2} \theta \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \end{array}$	for attempt to obtain a single fraction all correct as shown for use of correct identity for 'finishing off'
	Alternative scheme: $\begin{array}{r} \frac{1}{\operatorname{cosec} \theta-1}-\frac{1}{\operatorname{cosec} \theta+1}=\frac{\sin \theta}{1-\sin \theta}-\frac{\sin \theta}{1+\cos \theta} \\ =\frac{\left(\sin \theta+\sin ^{2} \theta\right)-\left(\sin \theta-\sin ^{2} \theta\right)}{1-\sin ^{2} \theta} \end{array}$	M1 A1	for attempt to obtain a single fraction in terms of $\sin \theta$ only all correct as shown
	$\begin{aligned} & =\frac{2 \sin ^{2} \theta}{\cos ^{2} \theta} \\ & =2 \tan ^{2} \theta \end{aligned}$	M1 A1	for use of correct identity for 'finishing off'
(ii)	$\begin{aligned} & 2 \tan ^{2} \theta=6+\tan \theta \\ & (2 \tan \theta+3)(\tan \theta-2)=0 \\ & \tan \theta=-\frac{3}{2}, \tan \theta=2 \end{aligned}$	M1 DM1	for attempt to use (i), to obtain a quadratic equation and valid attempt to solve for attempt to solve trig equation
	$\theta=63.4^{\circ}, 123.7^{\circ}, 243.4^{\circ}, 303.7^{\circ}$	A1,A1	for each 'pair'

