## MARK SCHEME for the May/June 2011 question paper

### for the guidance of teachers

# **0606 ADDITIONAL MATHEMATICS**

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Page 2 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE – May/June 2011          | 0606     | 12    |

### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
   B2, 1, 0 means that the candidate can earn anything from 0 to 2.

| Page 3 | Page 3 Mark Scheme: Teachers' version |      | Paper |
|--------|---------------------------------------|------|-------|
|        | IGCSE – May/June 2011                 | 0606 | 12    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

### Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

|   | Page 4                                               |                                                                       |           | Syllabus Paper                                               |                                         |                     |
|---|------------------------------------------------------|-----------------------------------------------------------------------|-----------|--------------------------------------------------------------|-----------------------------------------|---------------------|
|   |                                                      | 2011                                                                  |           | 0606                                                         | 12                                      |                     |
| 1 | $x^{2} + (2k + 10)$                                  | $x + \left(k^2 + 5\right) = 0$                                        | M1        | M1 for e                                                     | quating to zero ar                      | nd use of           |
|   | $\left(2k+10\right)^2 = 4$                           |                                                                       | M1        | $b^2 = 4ac$<br>M1 for se                                     |                                         |                     |
|   | k = -2                                               | · · · · · ·                                                           |           | 101 101 5                                                    | oration                                 |                     |
|   | da                                                   |                                                                       | [3]       |                                                              |                                         |                     |
|   | (or $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x +$         | (2k+10), x = -(k+5)                                                   | M1        | M1 for d<br>equate to                                        | ifferentiation and                      | attempt to          |
|   | $0 = \left(k+5\right)^2 -$                           | $(2k+10)(k+5)+k^2+5$                                                  | M1        | M1 for a                                                     | ttempt to substitu                      |                     |
|   | leading to $k =$                                     | -2)                                                                   | A1        | terms of solution.                                           | k, for $y = 0$ and for                  | or attempt at       |
|   | $\left( \text{or } \left( x + A \right)^2 = \right)$ | $= x^{2} + (2k+10)x + k^{2} + 5$                                      | M1        | M1 for a                                                     | pproach                                 |                     |
|   | A = (k+5), A                                         | $4^2 = k^2 + 5$                                                       | M1        | M1 for e                                                     | quating and attem                       | pt at solution      |
|   | $\left(k+5\right)^2 = k^2$                           | + 5, leading to $k = -2$ )                                            | A1        |                                                              |                                         |                     |
|   | (or by complet                                       | ing the square                                                        |           |                                                              |                                         |                     |
|   | y = (x + (k +                                        | $5))^{2} - (k+5)^{2} + (k^{2}+5)$                                     | M1        | M1 for a                                                     | pproach                                 |                     |
|   | $\left(k+5\right)^2 = k^2$                           | + 5                                                                   | M1        | M1 for equating last 2 terms to zero an attempt to solve     |                                         |                     |
|   | leading to $k =$                                     | -2)                                                                   | A1        |                                                              |                                         |                     |
| 2 | ${}^{5}C_{3}2^{2}a^{3} = (10)$                       | $(1)^4 C_2 \frac{a^2}{9}$                                             | B1B1      | B1 for <sup>5</sup>                                          | $C_3 2^2 a^3$ , B1 for <sup>4</sup>     | $C_2 \frac{a^2}{9}$ |
|   | $a = \frac{1}{6}$                                    |                                                                       | M1        |                                                              | relationship betw<br>nts and attempt to |                     |
|   |                                                      |                                                                       | A1<br>[4] |                                                              |                                         |                     |
| 3 | (a) $k = 2, m =$                                     | = 3, <i>p</i> = 1                                                     | B3        | B1 for ea                                                    | ich                                     |                     |
|   | (b) (i) 5                                            |                                                                       | B1        |                                                              |                                         |                     |
|   | (ii) $\frac{2\pi}{3}$                                |                                                                       | B1 [5]    |                                                              |                                         |                     |
|   | ere must be<br>culator in all pa                     | evidence of working without a arts                                    |           |                                                              |                                         |                     |
| 4 | -                                                    | $\frac{\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)} = 2\sqrt{2}$ | M1A1      | M1 for a to expand                                           | ttempt to rational<br>d                 | ise and attempt     |
|   | (ii) Area $=\frac{1}{2}$                             | $\times (4+2\sqrt{2}) \times (1+\sqrt{2})$                            | M1        | M1 for attempt at area using surd form and attempt to expand |                                         |                     |
|   | $= 4 + 3\sqrt{2}$                                    | $\overline{2}$                                                        | A1        |                                                              |                                         |                     |
|   | (iii) Area = $AC^2$                                  |                                                                       |           |                                                              |                                         |                     |
|   | =(4+2x)                                              | $\sqrt{2}$ ) <sup>2</sup> + $\left(1+\sqrt{2}\right)^2$               | M1        |                                                              | AC in surd                              |                     |
|   | =27+18                                               | , , , ,                                                               | A1<br>[6] | form, with attempt to expand                                 |                                         |                     |

| Pa                      | age 5 Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |            | Syllabus                                                                                                         | Paper                             |     |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----|--|
|                         | IGCSE – May/June 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |            | 0606                                                                                                             | 12                                |     |  |
|                         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |            |                                                                                                                  |                                   |     |  |
| 5 (i)                   | $2\left(\frac{1}{8}\right) - 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left(\frac{1}{4}\right) + 10\left(\frac{1}{2}\right) - 4$ | M1         | M1 for substitution of $x = 0.5$ or attemp<br>at long division                                                   |                                   |     |  |
|                         | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             | A1         |                                                                                                                  |                                   |     |  |
| (ii) $(2x-1)(x^2-2x+4)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | M1A1       | M1 attempt to obtain quadratic factor                                                                            |                                   |     |  |
| For $(x^2 -$            | -2x+4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $b^{2} < 4ac'$                                              | M1         | A1 for correct quadratic factor<br>M1 for correct use of discriminant or<br>solution of quadratic equation $= 0$ |                                   |     |  |
| so only o               | one real roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t of $x = 0.5$                                              | A1<br>[6]  | A1, all correct with statement of root.                                                                          |                                   |     |  |
| 6 (i)                   | $\lg y - 3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{5}(x-5)$                                          | B1M1<br>A1 | B1 for gradient, M1 for use of straight line equation                                                            |                                   |     |  |
| (ii)                    | Either b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e                                                           | B1         | B1 for $b = \frac{1}{5}$                                                                                         |                                   |     |  |
|                         | $y = 10^{\left(\frac{1}{5}x\right)}$ $= 10^{\frac{1}{5}x} 10^{\frac{2}{5}x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | M1         | M1 for use of powers of 10 correctly t obtain $a$                                                                |                                   |     |  |
|                         | $= 10^{9} 10$<br>a = 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | A1<br>[6]  | A1 for a                                                                                                         |                                   |     |  |
|                         | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $= \lg a + \lg 10^{bx}$ $a + bx, \ \lg a = 2$               | M1         | M1 for use of logarithms correctly to obtain $a$                                                                 |                                   |     |  |
|                         | a = 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                           | A1         | A1 for a                                                                                                         |                                   |     |  |
|                         | $b = \frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | B1         | B1 for b                                                                                                         | $=\frac{1}{5}$                    |     |  |
|                         | Or $10^3 = 10^5 = a(1)^5 = a($ |                                                             | M1         | M1 for simultaneous equations involvin powers of 10                                                              |                                   |     |  |
|                         | $b=\frac{1}{5}, a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =100                                                        | B1, A1     | B1 for b                                                                                                         | $=\frac{1}{5}$ , A1 for $a =$     | 100 |  |
| 7 (i)                   | $^{14}C_6 = 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03                                                          | B1         |                                                                                                                  |                                   |     |  |
| (11)                    | 80 . 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             | D1D1       | D1 for 8                                                                                                         | $C \sim c^6 C$                    |     |  |
| (11)                    | ${}^{8}C_{4} \times {}^{6}C_{2}$<br>= 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | B1B1       | B1 for <sup>8</sup>                                                                                              | . –                               |     |  |
|                         | =1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | B1         |                                                                                                                  | by ${}^{6}C_{2}$ or ${}^{8}C_{4}$ |     |  |
| (iii)                   | ${}^{8}C_{6} + 6^{8}C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. = 364                                                    | B1B1       | B1 for 1050<br>B1 for ${}^{8}C_{6}$ or equivalent                                                                |                                   |     |  |
|                         | $c_6 + c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | B1B1       |                                                                                                                  | ${}^{8}C_{5}$ or equivalent       |     |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | БТ<br>[7]  | B1 for 30                                                                                                        |                                   |     |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |            | 51 101 50                                                                                                        | · ·                               |     |  |

| Page 6 |       |                                                                                                                                                | Mark Scheme: Teacher<br>IGCSE – May/June                                                             |                      |                                                                    | Syllabus<br>0606                                                                       | Paper<br>12             |
|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|
| 0      |       |                                                                                                                                                |                                                                                                      |                      |                                                                    |                                                                                        |                         |
| 8      | (i)   |                                                                                                                                                |                                                                                                      | B1<br>B1<br>B1<br>B1 | B1 for <i>x</i><br>B1 for <i>x</i><br>B1 for <i>y</i><br>B1 for sl | = 2.5<br>= -5                                                                          |                         |
|        | (ii)  | (1,-9)                                                                                                                                         |                                                                                                      | B1                   |                                                                    |                                                                                        |                         |
|        | (iii) |                                                                                                                                                |                                                                                                      | √B1<br>B1<br>[7]     |                                                                    | shape from (i)<br>completely correc                                                    | et sketch               |
| 9      | (i)   | $\Delta OBA: \theta$                                                                                                                           | $+2\left(\frac{\theta}{3}\right)=\pi$                                                                | M1<br>A1             | M1 for using angles in an isosceles triangle                       |                                                                                        |                         |
|        | (ii)  | $9\pi = r \times \frac{3}{5}$ $r = 15$                                                                                                         | $\frac{\pi}{5}$                                                                                      | M1<br>A1             | M1 for u                                                           | use of $s = r\theta$                                                                   |                         |
|        | (iii) | Area = $\left(\frac{1}{2}\right)$<br>=105                                                                                                      | $\times 15^2 \times \frac{3\pi}{5} - \left(\frac{1}{2} \times 15^2 \times \sin\frac{3\pi}{5}\right)$ | M1M1<br>A1<br>[7]    |                                                                    | use of $\frac{1}{2}r^2\theta$ or $\frac{1}{2}$<br>use of $\frac{1}{2}r^2\sin\theta$ or |                         |
| 10     | (i)   | $\binom{29}{-13}$ -(                                                                                                                           | $\binom{5}{-6} = \binom{24}{-7}$                                                                     | M1                   | M1 for s                                                           | ubtraction                                                                             |                         |
|        |       | Magnitude                                                                                                                                      | = 25, unit vector $\frac{1}{25}\begin{pmatrix}24\\-7\end{pmatrix}$                                   | M1<br>A1             | M1 for a vector                                                    | ttempt to find ma                                                                      | gnitude of their        |
|        | (ii)  | $2\overrightarrow{AC} = 3\overrightarrow{A}$<br>or $2\overrightarrow{AB} + 2$<br>$\overrightarrow{AC} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ | $2\overrightarrow{BC} = 3\overrightarrow{AB}$ leading to                                             | M1                   |                                                                    | ttempt to find $\overline{AC}$<br>er method                                            | $\vec{c}$ – may be part |
|        |       |                                                                                                                                                | $\overrightarrow{DA} = 2\overrightarrow{OC} - 2\overrightarrow{OB}$                                  | M1                   | M1 for a                                                           | ttempt to find $\overline{OO}$                                                         |                         |
|        |       | leading to                                                                                                                                     | $\overrightarrow{OC} = \begin{pmatrix} 41\\ -16.5 \end{pmatrix}$                                     | A1<br>A1             | A1 for ea                                                          | ach                                                                                    |                         |
|        |       | (equivalent                                                                                                                                    | t methods acceptable)                                                                                | [7]                  |                                                                    |                                                                                        |                         |

|    | Page 7 |                                                                       | Mark Scheme: Teachers                                                                              | version        |                                                        | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paper           |
|----|--------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|    |        |                                                                       | IGCSE – May/June :                                                                                 | 2011           |                                                        | 0606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12              |
|    |        |                                                                       |                                                                                                    |                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| 11 | (i)    | $2\cos ec^2$                                                          | $x - 5\cos ecx - 3 = 0$                                                                            | M1A1           |                                                        | se of correct ident<br>terms of sin <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tity or attempt |
|    |        | `                                                                     | $\theta + 1)(\cos \operatorname{ec} \theta - 3) = 0$                                               | DM1            | DM1 for                                                | attempt to solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
|    |        | leading to                                                            | $\sin x = \frac{1}{3}, x = 19.5^{\circ}, 160.5^{\circ}$                                            | A1√A1          | √ 180°-                                                | their x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|    | (ii)   | $\tan 2y =$                                                           | $\frac{5}{4}$                                                                                      | M1             | M1 for a                                               | ttempt to get in te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rms of tan      |
|    |        | 2 <i>y</i> = 51.3                                                     | 4°, 231.34°                                                                                        | M1             | M1 for d angle                                         | ealing correctly w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vith double     |
|    |        | $y = 25.7^{\circ},$                                                   | 115.7°                                                                                             | A1,√A1         | $\sqrt{90^\circ}$ the                                  | ir y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|    | (iii)  | $\left(z + \frac{\pi}{6}\right) = z = \frac{2\pi}{3} - \frac{\pi}{3}$ | $=\frac{2\pi}{3}, \frac{4\pi}{3}$ $\frac{\pi}{6} \qquad \left(\frac{4\pi}{3}-\frac{\pi}{6}\right)$ | M1             | M1 for dealing with order correctly a attempt to solve |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|    |        | $z = \frac{\pi}{2}, \frac{7\pi}{6}$                                   | $\frac{\pi}{5}$ allow 1.57, 3.67                                                                   | A1, A1<br>[12] |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| 12 | EIT    | HER                                                                   |                                                                                                    |                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|    |        | $\frac{\mathrm{d}y}{\mathrm{d}x} = 9x^2$                              |                                                                                                    | M1             | M1 for d $x = -1$                                      | ifferentiation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | substitution of |
|    |        | when x =                                                              | $-1, \frac{\mathrm{d}y}{\mathrm{d}x} = 0$                                                          |                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|    |        | tangent $y$<br>A (0, 5)                                               | = 5,                                                                                               | DM1<br>A1      |                                                        | attempt at equation dinates of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on of tangent   |
|    |        | B (0, 1)                                                              |                                                                                                    | B1             | B1 for <i>B</i>                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|    |        | At <i>B</i> , $\frac{\mathrm{d}y}{\mathrm{d}x}$                       |                                                                                                    |                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|    |        |                                                                       | $-1 = \frac{1}{5}x$ C (-5, 0)                                                                      | M1A1           |                                                        | ttempt at normal a benchmark to the second sec |                 |
|    |        | At $D \frac{1}{5}x$                                                   | +1=5, $D$ (20, 5)                                                                                  | M1A1           |                                                        | ttempt to obtain <i>L</i><br>nd tangent equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
|    |        | Area = $\frac{1}{2}$                                                  | ×20×5,                                                                                             | M1             | M1 for v                                               | alid attempt at are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ea              |
|    |        | = 50                                                                  |                                                                                                    | A1<br>[10]     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |

|    | Page 8                                                          | Mark Scheme: Teachers' version                                            |                   |                                                                   | Syllabus                                                                                                                                             | Paper                                          |
|----|-----------------------------------------------------------------|---------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|    |                                                                 | IGCSE – May/June 2011                                                     |                   |                                                                   | 0606                                                                                                                                                 | 12                                             |
| 12 | OR<br>$\frac{dy}{dx} = 3x^2 - 12$<br>When $\frac{dy}{dx} = 0$ , | $IGCSE - May/June$ $Ex + 9$ $x = 1, 3$ $P(1, 4)$ $x^{3} - 6x^{2} + 9x dx$ |                   | can be us<br>M1 for a<br>A1 for b<br>A1 for y<br>$\sqrt{B1}$ on y | <b>0606</b><br>Sifferentiation and<br>sing a product<br>ttempt to solve<br>oth x values<br>coordinate<br>y coordinate for are<br>ttempt to integrate | <b>12</b><br>equating to 0,<br>ea of rectangle |
|    | $= 8 - \frac{27}{4} + \frac{11}{4}$<br>= 4                      |                                                                           | DM1<br>A1<br>[10] | DM1 for                                                           | application of lim                                                                                                                                   | iits                                           |