MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2, 1, 0 means that the candidate can earn anything from 0 to 2 .

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	22

The following abbreviations may be used in a mark scheme or used on the scripts:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow "" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

OW $-1,2$ This is deducted from A or B marks when essential working is omitted.
PA -1 This is deducted from A or B marks in the case of premature approximation.
S -1 Occasionally used for persistent slackness - usually discussed at a meeting.
EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	22

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \[
\begin{aligned}
\& m=\frac{18-3}{4-1} \text { or } 5 \text { soi } \\
\& Y-3=\text { their } 5(X-1) \text { or } Y-18=\text { their } 5(X-4) \\
\& \text { or } 3=\text { their } 5+c \text { or } 18=\text { their } 5 \times 4+c \\
\& \sqrt{y}=(\text { their } m) x^{2}+(\text { their } c) \text { or } \\
\& \sqrt{y}=(\text { their } m)\left(x^{2}-1\right)+3 \text { or } \\
\& \sqrt{y}=(\text { their } m)\left(x^{2}-4\right)+18 \\
\& y=\left(5 x^{2}-2\right)^{2} \text { or } y=\left(5\left(x^{2}-1\right)+3\right)^{2} \text { or } \\
\& y=\left(5\left(x^{2}-4\right)+18\right)^{2} \text { cao, isw }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or \(18=4 m+c\) and \(3=m+c\) subtracting/substituting to solve for \(m\) or \(c\), condone one error \\
or using their \(m\) or their \(c\) to find their \(c\) or their \(m\), without further error \\
their \(m\) and \(c\) must be validly obtained
\end{tabular} \\
\hline \begin{tabular}{l}
2 (a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& (p+1) \ln 3=\ln 0.7 \\
\& p=\frac{\ln 0.7}{\ln 3}-1 \text { or } p=\frac{\lg 0.7}{\lg 3}-1 \\
\& -1.32 \text { cao } \\
\& 2^{\frac{5}{2}} \times x^{6} \times y^{-\frac{1}{2}} \text { or } a=\frac{5}{2}, b=6, c=-\frac{1}{2}
\end{aligned}
\] \& M1
M1

A1

B3 \& | or $p+1=\log _{3} 0.7$ or $p \ln 3=\ln \left(\frac{0.7}{3}\right)$ or $p=\log _{3} 0.7-1$ or $p \ln 3=\ln \left(\frac{0.7}{3}\right) \div \ln 3$ allow $\mathbf{M 2}$ for $p=\log _{3}\left(\frac{0.7}{3}\right)$ correct answer only scores B3 |
| :--- |
| B1 for each component |

\hline | $3 \quad$ (a) (i) |
| :--- |
| (ii) |
| (b) | \& | A and E |
| :--- |
| C and D | \& B2

B2

B2 \& | 1 mark for each |
| :--- |
| B1 for 1 extra, $\mathbf{B 0}$ if 2 or more extras |
| 1 mark for each |
| B1 if 1 extra, B0 if 2 or more extras $(-1,0),(1,3),(3,4)$ |
| or B1 for two points correct and joined or for three points correct but clearly not joined |

\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2013	0606	22

4 (i) (ii)	$\begin{aligned} & \overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C} \text { or } \\ & \overrightarrow{O B}-\overrightarrow{O A}=3(\overrightarrow{O C}-\overrightarrow{O A}) \text { soi } \\ & \pm(18 \mathbf{i}-9 \mathbf{j}) \text { o.e. or } \overrightarrow{O C}=\frac{2}{3} \overrightarrow{O A}+\frac{1}{3} \overrightarrow{O B} \\ & 4 \mathbf{i}-21 \mathbf{j}+\frac{1}{3}(\text { their }(18 \mathbf{i}-9 \mathbf{j})) \text { o.e. or } \\ & \frac{2}{3}(4 \mathbf{i}-21 \mathbf{j})+\frac{1}{3}(22 \mathbf{i}-30 \mathbf{j}) \\ & 10 \mathbf{i}-24 \mathbf{j} \text { cao } \\ & \|\overrightarrow{O C}\|=\sqrt{\text { their } 10^{2}+\text { their }(-24)^{2}} \text { soi } \\ & \frac{1}{13}(5 \mathbf{i}-12 \mathbf{j}) \text { or } \frac{1}{26}(10 \mathbf{i}-24 \mathbf{j}) \text { isw } \end{aligned}$	B1 B1 M1 A1 M1 A1 FT	$\text { or } 3 \overrightarrow{A C}=3\left(c_{1}-4\right) \mathbf{i}+3\left(c_{2}+21\right) \mathbf{j}$ o.e. soi or $3\left(c_{1}-4\right)=$ their 18 and $3\left(c_{2}+21\right)=$ their (-9) condone $\|\overrightarrow{O C}\|=\sqrt{\text { their } 10^{2}+\text { their }(24)^{2}}$ FT their $x \mathbf{i}+y \mathbf{j}$ o.e.
5	$\begin{aligned} & A X=\sqrt{45} \\ & A X=3 \sqrt{5} \\ & \frac{1}{2}(4+\sqrt{5}+2+x) \times \text { their } \sqrt{45} \text { soi } \\ & 15(\sqrt{5}+2)=\frac{1}{2}(4+\sqrt{5}+2+x) \times \text { their } \sqrt{45} \text { or } \end{aligned}$ better Correctly divide their equation by their $\sqrt{5}$ or their $\sqrt{45}$ and rationalise denominator completion to $4+3 \sqrt{5}$ www	B1 B1 M1 M1 M1 A1	may be implied by $3 \sqrt{5}$ may be seen later may be implied by e.g. summation of rectangle and two triangles or correctly multiply both sides of their equation by their $\sqrt{5}$ or their $\sqrt{45}$ and obtain a rational coefficient of x soi answer only does not score

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	22

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
6 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\operatorname{arc} A B=r\left(\frac{\pi}{3}\right)
\] \\
chord \(A B=r\) with justification and summation and completion to given answer
\[
\begin{aligned}
\& r=12.7 \\
\& \frac{1}{2} \times \text { their } r^{2} \times\left(\frac{\pi}{3}-\sin \left(\frac{\pi}{3}\right)\right)
\end{aligned}
\] \\
awrt 14.6
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M3 \\
A1
\end{tabular} \& \begin{tabular}{l}
\[
r\left(\frac{3+\pi}{3}\right)
\] \\
must be seen; accept awrt 12.7 \\
may be implied for example 84.45...-69.84... \\
or M1 for \(\frac{1}{2} \times\) their \(r^{2} \times \frac{\pi}{3}\) or 84.45... and \\
M1 for \(\frac{1}{2} \times\) their \(r^{2} \times \sin \frac{\pi}{3}\) o.e. or 69.84... \\
and \\
M1 for Area Sector - Area triangle attempted
\end{tabular} \\
\hline \begin{tabular}{l}
\(7 \quad\) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
k(3-5 x)^{11}
\] \\
\(5 \times 12(3-5 x)^{11}\) or better, isw
\[
x^{2}(\text { their } \cos x)+(\text { their } 2 x) \sin x
\]
\[
x^{2} \cos x+2 x \sin x \text { isw }
\] \\
Quotient rule attempt:
\[
\begin{aligned}
\& \frac{\mathrm{d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x \\
\& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(1+\mathrm{e}^{2 x}\right)=2 \mathrm{e}^{2 x}
\end{aligned}
\] \\
clearly applies correct form of quotient rule
\[
\begin{aligned}
\& \frac{\left(1+\mathrm{e}^{2 x}\right)\left(\text { their } \sec ^{2} x\right)-\left(\text { their } 2 \mathrm{e}^{2 x}\right) \tan x}{\left(1+\mathrm{e}^{2 x}\right)^{2}} \\
\& \frac{\left(1+\mathrm{e}^{2 x}\right) \sec ^{2} x-2 \mathrm{e}^{2 x} \tan x}{\left(1+\mathrm{e}^{2 x}\right)^{2}} \text { isw }
\end{aligned}
\]
\end{tabular} \& M1
A1
M1
A1

B1
B1
M1

A1 \& | clearly applies correct form of product rule |
| :--- |
| Product rule attempt: $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(1+\mathrm{e}^{2 x}\right)^{-1}=-2 \mathrm{e}^{2 x}\left(1+\mathrm{e}^{2 x}\right)^{-2} \\ & \tan x\left(\text { their }-2 \mathrm{e}^{2 x}\left(1+\mathrm{e}^{2 x}\right)^{-2}\right)+ \\ & \left(1+\mathrm{e}^{2 x}\right)^{-1}\left(\text { their } \sec ^{2} x\right) \\ & \tan x\left(-2 \mathrm{e}^{2 x}\left(1+\mathrm{e}^{2 x}\right)^{-2}\right)+ \\ & \left(1+\mathrm{e}^{2 x}\right)^{-1}\left(\sec ^{2} x\right) \end{aligned}$ |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	$\mathbf{2 2}$

8 (i) (ii) (iii)	$\begin{aligned} & y-2=\left(\frac{6-2}{2+6}\right)(x+6) \text { o.e. soi } \\ & y=\frac{1}{2} x+5 \text { isw } \end{aligned}$ Use of $m_{1} m_{2}=-1$ $y-6=($ their -2$)(x-2)$ or better, isw $(x+6)^{2}+(y-2)^{2}=10^{2} \text { o.e. }$ Substitute $y=$ their $(-2 x+10)$ Solve their quadratic $(0,10)$ and $(4,2)$ o.e. only	M1 A1 M1 A1 FT B1 M1* M1 dep* A1	or $y-6=\left(\frac{6-2}{2+6}\right)(x-2)$ or $y=($ their -2$) x+c$, $c=$ their 10 , isw $\begin{aligned} & \text { or }(x-2)^{2}+(y-6)^{2}=(\sqrt{20})^{2} \\ & \text { o.e. or }(\sqrt{80})^{2}+ \\ & \left((x-2)^{2}+(y-6)^{2}\right)=10^{2} \end{aligned}$ or identifying one point by inspection from the length equation and testing it in the equation of $B C$ or vice versa or identifying the second point by inspection from the length equation and testing it in the equation of $B C$ or vice versa answer only does not score
9 (a) (b) (i) (ii)	$14=k+c \text { and } 6=\frac{k}{9}+c \text { o.e. }$ $\begin{aligned} & c=5 \\ & k=9 \end{aligned}$ 79.2 or $79.158574 \ldots$ rot to 4 or more sf $\begin{aligned} & \mathrm{e}^{2 x}+5 \mathrm{e}^{x}-24(=0) \text { or } \\ & \left(\mathrm{e}^{x}\right)^{2}+5 \mathrm{e}^{x}-24(=0) \text { o.e. } \end{aligned}$ factorise their 3 term quadratic $\begin{aligned} & \mathrm{e}^{x}=3 \\ & x=\ln 3 \text { or } 1.1(0) \text { or } 1.0986122 \ldots \end{aligned}$ rot to 3 or more sf as only answer from fully correct working	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	for two equations in k and c; may be unsimplified; condone one slip in one equation condone one error, but must be three terms or correct/correct ft use of formula or completing the square ignore $\mathrm{e}^{x}=-8$ do not allow final mark if value given from $\mathrm{e}^{x}=-8$ if M0M0 then SC2 if $\mathrm{e}^{x}=3$ is seen www and leads to $x=\ln 3$ or 1.1(0) or $1.0986122 \ldots$ rot to 3 or more sf

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	22

$10 \text { (a) (i) }$ (ii) (iii) (b)	 3 180 $\operatorname{cosec} x=\frac{1}{\sin x}$ soi $\sin x=\sqrt{1-\cos ^{2} x}$ or $\sqrt{1-p^{2}}$ $\frac{-1}{\sqrt{1-p^{2}}} \text { o.e. }$	B1 B1 B1 B1	shape; cosine curve - ends must be approaching a turning point be centred on $y=1$ clear intent to have min at -2 and max at 4 2 cycles or $1+\tan ^{2} x=\frac{1}{\cos ^{2} x}$ or $\operatorname{cosec}^{2} x=1+\frac{1}{1-p^{2} / p^{2}}$ soi or $-\sqrt{1+\frac{p^{2}}{1-p^{2}}}$ or better

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	$\mathbf{2 2}$

