MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2					Syllabus	Paper		
		IGCSE – May/June 2014			0606 13			
1	(i)		$(x-1)^2 + 2$ b = 1, c = 2	B1, B1, B1	B1 for each, may be given in the form $y = 3(x-1)^2 + 2$			
	(ii)	(1, 2)		√B1	Follow through on their answers to (i) If using differentiation, follow through on their x only.			
2		Cons	$4^{y} \times 8^{x-y} = 1$ idering powers of either 2, 4 or 8 7x - y = 0 $^{+y} = \frac{1}{3}$	M1	M1 for considering powers of either 2, 4 or 8 and forming an equation using these powers			
		Consi	dering powers of 3 x + y = -1	B1	B1 for equation co powers of 3	onsidering		
		Solvin	ng both simultaneously gives $x = -\frac{1}{8}, y = -\frac{7}{8}$	M1 A1	M1 for attempt to solve their equations A1 for both			
3	(i)	f(-3)	$= -27 + 9p - 3p^{2} + 21$ = 9p - 3p^{2} - 6	M1 A1	M1 for substitution of $x = -3$ A1 answer must be simplified			
	(ii)	$9p - 3p^2 - 6 < 0$ (p - 1)(p - 2) > 0 M1		M1	M1 for attempt to factorise			
			al values 1 and 2 p < 1, p > 2	A1 A1	A1 for critical values A1 for correct range			
4	(i)		$(24-2x)^2$ (576-96x+4x ²)	M1	M1 for attempt at lengths, 2 of which	-		
			$4x^3 - 96x^2 + 576x$	A1	same A1 for expansion answer	to reach given		
	(ii)	$\frac{\mathrm{d}V}{\mathrm{d}x} =$	$=12x^2 - 192x + 576$	M1	M1 for attempt to	o differentiate		
		When	$n \frac{dV}{dx} = 0, 12x^2 - 192x + 576 = 0$	DM1	DM1 for equating	ax		
					and attempt to solv	ve		
		leadi	ng to $(x-4)(x-12) = 0$					
		with $V = 1$	x = 4 the only possible solution 024	A1 A1	A1 for $x = 4$ A1 for $V = 1024$			

Page 3		Mark Scheme	Syllabus Paper			
		IGCSE – May/June 2014	0606 13			
5	(i)	$64 - 960x + 6000x^2$	B1, B1, B1	B1 for each correct term		
	(ii)	$(64 - 960x + 6000x^2)(a^3 + 3a^2bx),$	B 1	B1 for first two terms of $(a + bx)^3$		
		$64a^3 = 512, a = 2$	B1	B1 for equating constant term to 512 and obtaining $a = 2$		
		$-960a^3 + 3a^2b(64) = 0$	M1	M1 for attempt to equate coefficient of x to zero, must have two terms involved		
		leading to $b = 10$	A1	A1 for $b = 10$		
6		When $x = 2$, $y = -4$	B1	B1 for $y = -4$		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = x \left(\frac{2x}{3}\right) \left(x^2 - 12\right)^{\frac{2}{3}} + \left(x^2 - 12\right)^{\frac{1}{3}}$	M1, B1 A1	M1 for differentiation of a product B1 for $\frac{2x}{3}(x^2 - 12)^{-\frac{2}{3}}$		
		When $x=2$, $\frac{dy}{dx}=-\frac{4}{3}$	M1	M1 for attempt at normal equation		
		Normal: $y + 4 = \frac{3}{4}(x - 2)$	A1	A1 allow unsimplified		
		(4y = 3x - 22)				
7	(a) (i)	15120	B1			
	(ii)	$(5\times4)\times(4\times3\times2)$ 480	M1 A1	M1 for attempt to multiply number of ways of getting 4 letters by the number of ways of		
				getting 2 digits.		
	(b) (i)	5456	B 1			
	(ii)	¹⁸ C ₂ ×15 2295	M1 A1	M1 for attempt at an appropriate product, at least one term must be correct.		
	(iii)	5456 – Number of ways only girls get tickets 5456 – 455 = 5001	M1 A1	M1 for a complete correct method <i>their</i> (i) – number of ways only girls get tickets		
		Or 1B 2G 1890 2B 1G 2295 3B 816	M1	M1 must be considering at least 2 of the cases shown		
		Total 5001	A1			

	Page 4		Mark Scheme	Syllabus	Paper		
		IGCSE – May/June 2014			0606	13	
8	(i)	1		B1			
ð	(i)			ы			
	(ii)	<i>a</i> =	$8e^{-2t}$	M1	M1 for attempt to differentiate		
		<u>م</u>	$e^{2t} = 6, -2t = \ln \frac{3}{4}$	DM1	DM1 for correct a	ttempt to solve	
		oe	$-6, -2i - 11 - \frac{11}{4}$	2	equation in the for		
					$e^{-2t} = constant$		
		<i>t</i> =	0.144	A1	A1 must be at least 3 sf		
	(iii)	<i>s</i> = :	$5t + 2e^{-2t}$ (+ c)	M1	M1 for attempt to	integrate	
		Wh	en $t = 0$, $s = 0$, so $c = -2$	DM1,A1	DM1 for attempt and A1 <i>c</i> correct	to find <i>c</i> ,	
		Wł	hen $t = 1.5$, $s = 5.60$	M1, A1	M1 for substitution of $t = 1.5$		
		Alte	ernative:	M1	M1 for attempt to	integrate	
			$s = \left[5t + 2e^{-2t}\right]_{0}^{1.5}$	DM1	DM1 for attempt	to use limits	
				A1 M1	A1 all correct M1 for evaluation	of square	
					bracket notation		
		Lea	ding to $s = 5.60$	A1			
	(iv)		ocity is always +ve, so no change in ction	B 1	Allow any valid a	rgument.	
9	9 (i) $\cos x (3 \sin x - 2) =$		$x\left(3\sin x-2\right)=0$				
		cos	$x = 0, \ x = 90^{\circ}$	B 1	B1 for 90°		
		sin	$x = \frac{2}{3}$,	M1	M1 for attempt t	o solve	
		0111	3'		$\sin x = \frac{2}{3}$		
		<i>x</i> =	41.8°, 138.2°	A1,√A1	Follow through answer	on their first	
	(ii)	10 s	$\sin^2 y + \cos y = 8$				
		10(1	$-\cos^2 y$ + $\cos y = 8$	M1	M1 for use of co	rrect identity	
		10 c	$\cos^2 y - \cos y - 2 = 0$	M1	M1 for attempt t term quadratic a solve quadratic		
			$(2\cos y - 1)(5\cos y + 2) = 0$	M1	M1 for attempt t factors in terms	-	
			$\cos y = \frac{1}{2}, \ \cos y = -\frac{2}{5}$				
	y		60°, 300° and $y = 113.6^\circ$, 246.4°	A1, A1	A1 for any 'pair'	,	

Page 5		Mark Scheme		Syllabus Paper	
		IGCSE – May/June 2014		0606 13	
10 (i)	x lg		B1		
(ii)			M1 A1, 0	M1 for plotting l -1 each error, po plotting, poor lin	oor point
(iii)		dient: b = 0.4, b = 2.5 (allow 2.45 to 2.55)	M1 A1	M1 for correct us	se of gradient
		rcept : 1 = -0.3, A = 0.5 (allow 0.4 to 0.6)	M1 A1	M1 for correct us	se intercept
(iv)	2.1	(allow 2 to 2.2)	M1, A1		

Page	6	Mark Scheme	Syllabus	Paper	
	IGCSE – May/June 2014			0606	13
11 (i)	at A $\sqrt{3} \sin 3x + \cos 3x = 0$		M1	M1 for equating to zero and attempt to solve using tan	
	$\tan 3x = -\frac{1}{\sqrt{3}}, \ 3x = \frac{5\pi}{6} \ 150^{\circ}$		DM1	DM1 for dealing with $3x$	
	$x = \frac{5\pi}{18} (0.873)$ (allow 50°)		A1		
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{3}\cos 3x - 3\sin 3x$		B1, B1	B1 for $\frac{dy}{dx}$	
	When	$n \frac{dy}{dx} = 0$, $\tan 3x = \sqrt{3}$, $3x = \frac{\pi}{3}$ or $3x = 60^{\circ}$,	M1	M1 for attempt	to solve $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		$x = \frac{\pi}{9} (0.349)$ (allow 20°)	A1		
(iii)	Area	$= \left[-\frac{\sqrt{3}}{3}\cos 3x + \frac{1}{3}x + \frac{1}{3}\sin 3x \right]_{\frac{\pi}{9}}^{\frac{5\pi}{18}}$	M1 A1, A1	M1 for attempt t A1 for each term	
		$\frac{\sqrt{3}}{3}\cos\frac{5\pi}{6} + \frac{1}{3}\sin\frac{5\pi}{6} - \left(-\frac{\sqrt{3}}{3}\cos\frac{\pi}{3} + \frac{1}{3}\sin\frac{\pi}{3}\right)$	DM1	DM1 for correct their limits	application of
	$=\frac{2}{3}$ or 0.667 or better		A1		