MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	23

(i) (ii)	$\begin{aligned} & 500=\frac{1}{2} r^{2}(1.6) \\ & 25 \text { only } \\ & \text { their } 25+\text { their } 25+\text { their } 25 \times 1.6 \text { or better } \\ & 90 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	± 25 is $\mathbf{A 0}$ their 25 must be positive
2	$\log _{x} 3=\frac{1}{\log _{3} x}$ oe soi $u^{2}-4 u-12=0 \text { oe }$ solve their 3 term quadratic in u Solve $\log _{3} x=6$ or $\log _{3} x=-2$ oe 729 and $\frac{1}{9}$	B1 M1 M1 M1 A1	may be implied by $\log _{x} 3=\frac{1}{u}$ oe condone sign errors
3 (i) (ii)	$\begin{aligned} & \left(\begin{array}{lll} 3 & 1 & 4 \\ 1 & 3 & 0 \end{array}\right) \text { and }\left(\begin{array}{l} 5 \\ 3 \\ 1 \end{array}\right) \\ & \text { or }\left(\begin{array}{lll} 5 & 3 & 1 \end{array}\right) \text { and }\left(\begin{array}{ll} 3 & 1 \\ 1 & 4 \\ 4 & 0 \end{array}\right) \end{aligned}$ Multiplication of compatible matrices $\binom{22}{17}$ or $\left(\begin{array}{ll}22 & 17\end{array}\right)$ as appropriate $\left(\begin{array}{ll} 1 & 1 \end{array}\right) \text { with }\binom{22}{17} \text { or }\left(\begin{array}{ll} 22 & 17 \end{array}\right) \text { with }\binom{1}{1}$	B1 M1 A1 B1	Must be correct shape from candidates product

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	23

$4 \quad$ (a) (i) (ii) (b) (i) (ii) (iii)	or $50 \notin C$ $64 \in S \cap C$ $\mathrm{n}\left(S^{\prime}\right)=90$	B1 B1 B1 B1ft B1	any Venn diagram showing three circles which do not all overlap ft only on use of $\not \subset$ and \subset instead of \notin and \in
5 (i) (ii)	$(2 \sqrt{2}+4)^{2}=8+16 \sqrt{2}+16$ Correct completion Use $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ Multiply top and bottom by $2 \sqrt{2}-3$ $2-\sqrt{2}$	B1 B1 M1 M1 A1	$\left(=\frac{(2 \sqrt{2}+4)}{2(2 \sqrt{2}+3)}\right)$ Or $4 \sqrt{2}-6$
6	Eliminate x or y Rearrange to quadratic in x or y $x^{2}-27 x+72=0 \text { or } y^{2}+9 y-90=0$ Factorise or solve 3 term quadratic $\begin{aligned} & x=3, x=24 \text { or } y=6, y=-15 \\ & y=6, y=-15 \text { or } x=3, x=24 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	23

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0606	23

9 (i) (ii)	$\left\{\begin{array}{l} (0,7) \\ m_{A B}=2 \\ \text { perpendicular gradient }=-\frac{1}{2} \\ y=-\frac{1}{2} x+7 \\ m_{A B}=-1 \\ y=-x+13 \end{array}\right.$ Solve their $y=-x+13$ and $y=-\frac{1}{2} x+7$ $D(12,1)$ Complete method for area 84	B1 B1 M1 A1 B1 B1 M1 A1 M1 A1	
(i) (ii)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sqrt{x^{2}+21}\right)=\frac{x}{\sqrt{x^{2}+21}}$ Use of quotient rule $\frac{2 \sqrt{\left(x^{2}+21\right)}-2 x \times \frac{x}{\sqrt{\left(x^{2}+21\right)}}}{\left(x^{2}+21\right)}$ Multiply each term by $\sqrt{\left(x^{2}+21\right)}$ $\frac{2\left(x^{2}+21\right)-2 x^{2}}{\left(x^{2}+21\right)^{\frac{3}{2}}}$ leading to $k=42$ $\frac{6}{k} \times \frac{2 x}{\sqrt{x^{2}+21}}$ Use limits in $C \times \frac{2 x}{\sqrt{x^{2}+21}}$ $\frac{8}{55} \text { or } 0.145$	B1 M1 A1 M1 A1 M1 M1 A1	Alt method using product rule $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\left(\sqrt{x^{2}+21}\right)}=\frac{-x}{\left(\sqrt{x^{2}+21}\right)^{3}}$ is B 1 then M1 A1 as in quotient k must be a constant

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	23

11 (i)	$\overrightarrow{O M}=\mathbf{a}$	B1	
	$\overrightarrow{M B}=5 \mathbf{b}-\mathbf{a}$	B1	
	$\overrightarrow{O N}=3 b$	B1	
(ii)	$\overrightarrow{A P}=\lambda(3 \mathbf{b}-2 \mathbf{a})$	B1	
(iii)	$\begin{gathered} \overrightarrow{M P}=\overrightarrow{M A}+\overrightarrow{A P} \\ \mathbf{a}+\lambda(3 \mathbf{b}-2 \mathbf{a}) \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
(iv)	Put $\overrightarrow{M P}=\mu \overrightarrow{M B}$	M1	
	Equate components	M1	
	Solve simultaneous equations	M1	
	$\lambda=\frac{5}{7}$	A1	
12 (i)	$3<\mathrm{f}<7$	B1,B1	If $\mathbf{B 0}$ then $\mathbf{S C 1}$ for $\mathbf{3}<\mathrm{f}<7$
(ii)	$\mathrm{f}(12)=5$	B1	$\mathrm{f}^{2}(x) \sqrt{(\sqrt{(x-3)}+2-3)}+2 \text { earns B1 }$
	$(f(5)=) 2+\sqrt{2}$	B1	
(iii)	Clear indication of method $\mathrm{f}^{-1}(x)=(x-2)^{2}+3$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	condone $y=(x-2)^{2}+3$
(iv)	$\operatorname{gf}(x)=\frac{120}{\sqrt{(x-3)}+2}$	B1	
	Attempt to solve their $\mathrm{gf}(x)=20$	M1	
	$x=19$	A1	

