MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page					Syllabus	Paper				
		IGCSE – May/June 2014				0606	23			
					T					
1	(i)	500 =	$=\frac{1}{2}r^{2}(1.6)$	M1						
		25 on	ly	A1	±23	±25 is A0				
	(ii)	their	$25 + their 25 + their 25 \times 1.6$ or better	M1	thei	their 25 must be positive				
		90		A1						
2		$\log_x d$	$3 = \frac{1}{\log_3 x}$ oe soi	B 1	may	be implied by log	$a_x 3 = \frac{1}{u}$ oe			
		$u^{2}-4$	u - 12 = 0 oe	M1	con	done sign errors				
		solve	their 3 term quadratic in <i>u</i>	M1						
		Solve	$x = \log_3 x = 6$ or $\log_3 x = -2$ oe	M1						
		729 a	nd $\frac{1}{9}$	A1						
3			$ \begin{pmatrix} 1 & 4 \\ 3 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} $	B1						
		or (5	3 1) and $ \begin{pmatrix} 3 & 1 \\ 1 & 4 \\ 4 & 0 \end{pmatrix} $							
		Multi	plication of compatible matrices	M1		st be correct shape duct	from candidates			
		$\begin{pmatrix} 22\\17 \end{pmatrix}$	or (22 17) as appropriate	A1						
	(ii)	$\begin{pmatrix} 1 & 1 \end{pmatrix}$ with $\begin{pmatrix} 22 \\ 17 \end{pmatrix}$ or $\begin{pmatrix} 22 & 17 \end{pmatrix}$ with $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$								

	Page 3		Syllabus	Paper			
		IGCSE – May/June 201	0606	23			
4	(a) (i)		B1				
	(ii)	or or	B1		Venn diagram sho ch do not all overla		
	(b) (i)	$50 \notin C$	B 1				
	(ii)	$64 \in S \cap C$	B1ft		ft only on use of $\not\subset$ and \subset instead of and \in		
	(iii)	n(S') = 90	B1				
5	(i)	$\left(2\sqrt{2}+4\right)^2 = 8 + 16\sqrt{2} + 16$	B1				
		Correct completion	B1				
	(ii)	Use $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1		$\frac{\left(2\sqrt{2}+4\right)}{2\left(2\sqrt{2}+3\right)}$		
		Multiply top and bottom by $2\sqrt{2} - 3$	M1				
		$2 - \sqrt{2}$	A1	Or 4	$4\sqrt{2}-6$		
6		Eliminate <i>x</i> or <i>y</i>	M1				
		Rearrange to quadratic in x or y	M1				
		$x^{2} - 27x + 72 = 0$ or $y^{2} + 9y - 90 = 0$	A1				
		Factorise or solve 3 term quadratic	M1				
		x = 3, x = 24 or $y = 6, y = -15$	A1				
		y = 6, y = -15 or $x = 3, x = 24$	B1				

	Page 4					Syllabus	Paper
			IGCSE – May/June 2014			0606	23
7	(a)	$\frac{\cos \theta}{1}$	$\frac{\partial}{\partial} + \frac{\cos\theta}{\sin\theta}}{\frac{\partial}{\partial} + \frac{1}{\sin\theta}}$	B1			
		denor	is the fractions in the numerator and minator using common denominator $\frac{\theta + \cos^2 \theta}{\theta + \cos \theta}$ and completion	M1 A1			
	(b)	evide	nce of 13	B 1			
	sina		$=\frac{5}{13}$	B1			
		$\cos x$	$=-\frac{12}{13}$	B1ft	ft or	n their 13	
8	8 (i) Atte		npt to find $b^2 - 4ac$	M1	-	be in formula ttempt to comple	te square
	Com		pletely correct argument	A1			
	(ii) <i>m</i> =		5(4) - 8(2) + 3	M1			
	y-1		0 = 11(x-2) or $y = 11x - 12$	A1			
	(iii)	Integ	rate to $2x^3 - 4x^2 + 3x(+c)$	B2,1,0			
		10 = 2	$2(2)^3 - 4(2)^2 + 3(2) + c$	M1		on <i>c</i> being a gent gration	uine constant of
		y = 2x	$x^3 - 4x^2 + 3x + 4$ soi	A1			

	Page	5	Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2014	0606	23	
9	(i)	(0, 7)		B 1		
		m_{AB} =	= 2	B 1		
		perpe	indicular gradient $=-\frac{1}{2}$	M1		
		<i>y</i> = -	$-\frac{1}{2}x + 7$	A1		
((ii)	<i>m</i> _{AB} =	= -1	B 1		
		$y = -\frac{1}{2}$	x + 13	B 1		
		Solve	their $y = -x + 13$ and $y = -\frac{1}{2}x + 7$	M1		
		D(12	,1)	A1		
		Com	plete method for area	M1		
		84		A1		
10	0 (i) $\frac{d}{dx}$		$\sqrt{x^2+21} = \frac{x}{\sqrt{x^2+21}}$	Alt method using produ	uct rule	
		un x	$\sqrt{y}x + 21$		$\frac{\mathrm{d}}{\mathrm{d}x}\frac{1}{\left(\sqrt{x^2+21}\right)} = \frac{1}{\left(\sqrt{x^2}\right)^2}$	$\frac{-x}{(x^2+21)^3}$ is B1
		Use o	of quotient rule	M1	then M1 A1 as in quot	ient
		$2\sqrt{x}$	$\frac{x^{2}+21)-2x \times \frac{x}{\sqrt{x^{2}+21}}}{(x^{2}+21)}$	A1		
		Multi	ply each term by $\sqrt{x^2 + 21}$	M1		
		$\frac{2(x^2)}{(x^2)}$	$(\frac{x^2+21}{x^2+21}) = \frac{2x^2}{x^2}$ leading to $k = 42$	A1		
((ii)		$\frac{2x}{\sqrt{x^2 + 21}}$	M1	<i>k</i> must be a constant	
		Use 1	imits in $C \times \frac{2x}{\sqrt{x^2 + 21}}$	M1		
		$\frac{8}{55}$ o	r 0.145	A1		

Page 6						Syllabus	Paper
		IGCSE – May/June 2014				0606	23
11 (i)	$\overrightarrow{OM} = \mathbf{a}$			B1			
	$\overrightarrow{MB} = 5$	b – a		B 1			
(ii)	$\overrightarrow{ON} = 3b$			B1			
	$\overrightarrow{AP} = \lambda$	$(3\mathbf{b} - 2\mathbf{a})$		B1			
(iii)	$\overrightarrow{MP} = \overrightarrow{MA} + \overrightarrow{AP}$ a + λ (3 b - 2 a)			M1 A1			
(iv)	Put \overrightarrow{MP}			M1			
	Equate c	omponents		M1			
	Solve sin	nultaneous equations		M1			
	$\lambda = \frac{5}{7}$			A1			
12 (i)	3 < f < 7	7		B1,B1	If B0	then SC1 for 3	< f < 7
(ii)	f(12) = 5	i -		B1	$f^{2}(x)$	$\sqrt{\left(\sqrt{(x-3)}+2\right)}$	(2-3) + 2 earns B1
	(f(5) =)	$2 + \sqrt{2}$		B1			
(iii)		lication of method $(x-2)^2 + 3$		M1 A1	condo	one $y = (x - 2)^2$	+ 3
(iv)	$\operatorname{gf}(x) =$	$\frac{120}{\sqrt{(x-3)}+2}$		B1			
	Attempt	to solve <i>their</i> $gf(x) = 20$)	M1			
	<i>x</i> = 19			A1			