MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

2	$\begin{aligned} \frac{\tan \theta+\cot \theta}{\operatorname{cosec} \theta} & =\frac{\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}} \\ & =\frac{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}}{\frac{1}{\sin \theta}} \\ & =\frac{1}{\cos \theta} \\ & =\sec \theta \end{aligned}$ Alternative: $\begin{aligned} \frac{\tan \theta+\cot \theta}{\operatorname{cosec} \theta} & =\frac{\frac{\tan ^{2} \theta+1}{\tan \theta}}{\operatorname{cosec} \theta} \\ & =\frac{\sec ^{2} \theta}{\tan \theta \frac{1}{\sin \theta}} \\ & =\frac{\sec ^{2} \theta}{\sec \theta} \\ & =\sec \theta \end{aligned}$	M1 M1 M1 A1 M1 M1 M1 A1	for $\tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta} ;$ allow when used dealing correctly with fractions in the numerator; allow when seen use of the appropriate identity; allow when seen must be convinced it is from completely correct work (beware missing brackets) for either $\tan \theta=\frac{1}{\cot \theta}$ or $\cot \theta=\frac{1}{\tan \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta} ;$ allow when used dealing correctly with fractions in numerator; allow when seen use of the appropriate identity; allow when seen must be convinced it is from completely correct work
3	$\begin{aligned} & \mathbf{A}^{-1}=\frac{1}{2}\left(\begin{array}{cc} 3 & -2 \\ -5 & 4 \end{array}\right) \\ & \binom{x}{y}=\frac{1}{2}\left(\begin{array}{cc} 3 & -2 \\ -5 & 4 \end{array}\right)\binom{8}{9} \\ & \binom{x}{y}=\frac{1}{2}\binom{6}{-4} \\ & x=3, y=-2 \end{aligned}$	B1 B1 M1 A1, A1	$\frac{1}{2}$ multiplied by a matrix for matrix attempt to use the inverse matrix, must be pre-multiplication

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

4 (i) (ii)	Area $=$ $\left(\frac{1}{2} \times 12^{2} \times 1.7\right)+\left(\frac{1}{2} \times 12^{2} \sin (2 \pi-1.7-2.4)\right)$ $=$ awrt 181 $B C^{2}=12^{2}+12^{2}-(2 \times 12 \times 12 \cos 2.1832)$ or $B C=2 \times 12 \times \sin \left(\frac{2 \pi-4.1}{2}\right)$ $\begin{aligned} & \quad B C=21.296 \\ & \text { Perimeter }=(12 \times 1.7)+12+12+21.296 \\ & \quad=65.7 \end{aligned}$	B1,B1 M1 A1 M1 A1 B1 M1 A1	B1 for sector area, allow unsimplified B1 for correct angle $B O C$, allow unsimplified correct attempt at area of triangle, allow unsimplified using their angle $B O C$ (Their angle $B O C$ must not be 1.7 or 2.4) correct attempt at $B C$, may be seen in (i), allow if used in (ii). Allow use of their angle BOC. for arc length, allow unsimplified for a correct 'plan' (an arc +2 radii and $B C$)
$5 \quad$ (a) (i) (ii) (iii)	20160 $\begin{aligned} & 3 \times{ }^{6} P_{4} \times 2 \\ & =2160 \end{aligned}$ $\begin{aligned} & 5 \times 2 \times{ }^{6} P_{4} \\ & =3600 \end{aligned}$ Alternative 1: $\begin{aligned} & { }^{6} C_{4} \times 5!\times 2 \\ & =3600 \end{aligned}$ Alternative 2: $\begin{aligned} & \left({ }^{7} P_{5}-{ }^{6} P_{5}\right) \times 2 \\ & =3600 \end{aligned}$ Alternative 3: $\begin{aligned} & 2!\left({ }^{6} P_{4}+\left({ }^{6} P_{1} \times{ }^{5} P_{3}\right)+\left({ }^{6} P_{2} \times{ }^{4} P_{2}\right)+\left({ }^{6} P_{3} \times{ }^{3} P_{1}\right)+{ }^{6} P_{4}\right) \\ & =3600 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1,B1 } \\ \text { B1,B1 } \\ \text { B1 } \\ \\ \text { B2 } \\ \text { B1 } \\ \text { B2 } \\ \text { B1 } \\ \text { B2 } \\ \text { B1 } \end{gathered}$	B1 for ${ }^{6} P_{4}$ (must be seen in a product) B1 for all correct, with no further working B1 for ${ }^{6} P_{4}$ (must be seen in a product) B1 for 5 (must be in a product) B1 for all correct, with no further working for ${ }^{6} C_{4} \times 5$! for ${ }^{6} C_{4} \times 5!\times 2$ for $\left({ }^{7} P_{5}-{ }^{6} P_{5}\right)$ for $\left({ }^{7} P_{5}-{ }^{6} P_{5}\right) \times 2$ 4 terms correct or omission of 2 ! in each term all correct

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

(b) (i) (ii)	${ }^{14} C_{4} \times{ }^{10} C_{4} \quad \text { or } \quad{ }^{14} C_{8} \times{ }^{8} C_{4}$ (or numerical or factorial equivalent) $=210210$ $\begin{aligned} & { }^{8} C_{4} \times{ }^{6} C_{4} \\ & \quad=1050 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1, \mathrm{~B} 1 \\ & \mathrm{~B} 1, \mathrm{~B} 1 \end{aligned}$	B1 for either ${ }^{14} C_{4}$ or ${ }^{14} C_{8}$ as part of a product B1 for correct answer, with no further working B1 for either ${ }^{8} C_{4}$ or ${ }^{6} C_{4}$ as part of a product B1 for correct answer with no further working
6 (i)	$10 \ln 4$ or 13.9 or better	B1	
(ii)	$\left(\frac{\mathrm{d} x}{\mathrm{~d} t}=\right) \frac{20 t}{t^{2}+4}-4$	M1 B1	attempt to differentiate and equate to zero $\frac{20 t}{t^{2}+4}$ or equivalent seen
	When $\frac{\mathrm{d} x}{\mathrm{~d} t}=0, \frac{20 t}{t^{2}+4}=4$ leading to $t^{2}-5 t+4=0$ $t=1, t=4$	DM1 A1	attempt to solve their $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$, must be a 2 or 3 term quadratic equation with real roots for both

\begin{tabular}{|c|c|c|c|}
\hline (iii) \& \begin{tabular}{l}
If \((v=) \frac{20 t}{t^{2}+4}-4\)
\[
(a=) \frac{20\left(t^{2}+4\right)-20 t(2 t)}{\left(t^{2}+4\right)^{2}}
\] \\
\(20\left(4-t^{2}\right)\) or \(80-20 t^{2}\) or \(4-t^{2}\) or equivalent expression involving \(-t^{2}\) \\
When acceleration is \(0, t=2\) only \\
Alternative 1 for first 3 marks: \\
\(\operatorname{If}(v=) \frac{20 t-4 t^{2}-16}{t^{2}+4}\)
\[
\begin{equation*}
(a=) \frac{\left(t^{2}+4\right)(20-8 t)-\left(20 t-4 t^{2}-16\right)}{\left(t^{2}+4\right)^{2}} \tag{2t}
\end{equation*}
\] \\
Alternative 2 for M1 mark: \\
If \((v=) 20 t\left(t^{2}+4\right)^{-1}-4\)
\[
(a=) 20 t\left(-2 t\left(t^{2}+4\right)^{-2}\right)+20\left(t^{2}+4\right)^{-1}
\] \\
Alternative 3 for the first \(\mathbf{3}\) marks
\[
\begin{aligned}
\& \text { If }(v=)\left(20 t-4 t^{2}-16\right)\left(t^{2}+4\right)^{-1} \\
\& (a=)\left(20 t-4 t^{2}-16\right)\left(-2 t\left(t^{2}+4\right)^{-2}\right)+(20-8 t)\left(t^{2}+4\right)^{-1} \\
\& \text { Numerator }=-2 t\left(20 t-4 t^{2}-16\right)+(20-8 t)\left(t^{2}+4\right)
\end{aligned}
\]
\end{tabular} \& M1
A1
A1
A1
B1
B1
M1
A1
A1

M1
M1
A1

A1 \& | attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ $20\left(t^{2}+4\right)$ |
| :--- |
| $20 t(2 t)$ |
| $20\left(4-t^{2}\right)$ or $80-20 t^{2}$ or $4-t^{2}$ |
| $t=2$, dependent on obtaining first and second A marks |
| attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ |
| for $\left(t^{2}+4\right)(20-8 t)$ |
| for $\left(20 t-4 t^{2}-16\right)(2 t)$ |
| attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ |
| attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ |
| for $2 t\left(20 t-4 t^{2}-15\right)$ |
| for $(20-8 t)\left(t^{2}+4\right)$ |

\hline | $7 \quad$ (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& \[

$$
\begin{aligned}
& \overrightarrow{D A}=3 \mathbf{a}-\mathbf{b} \\
& \overrightarrow{D B}=7 \mathbf{a}-\mathbf{b} \\
& \overrightarrow{A X}=\lambda(4 \mathbf{a}+\mathbf{b}) \\
& \overrightarrow{D X}=3 \mathbf{a}-\mathbf{b}+\lambda(4 \mathbf{a}+\mathbf{b})
\end{aligned}
$$
\] \& B1

B1
B1

M1

A1 \& | mark final answer, allow unsimplified |
| :--- |
| mark final answer, allow unsimplified |
| mark final answer, allow unsimplified |
| their (i) + their (iii) or equivalent valid method or $3 \mathbf{a}-\mathbf{b}+$ their (iii) Allow unsimplified |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

(v)		$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { A1,A1 } \end{gathered}$	equating their (iv) and $\mu \times$ their (ii) for an attempt to equate like vectors and attempt to solve 2 linear equations for λ and μ A1 for each
$\begin{array}{ll}8 & \text { (i) } \\ & \text { (ii) } \\ \\ & \\ & \text { (iii) }\end{array}$	$5 \mathrm{e}^{2 x}-\frac{1}{2} \mathrm{e}^{-2 k} \quad(+c)$	B1, B1	B1 for each term, allow unsimplified
	$\left(5 \mathrm{e}^{2 k}-\frac{1}{2} \mathrm{e}^{-2 k}\right)-\left(5 \mathrm{e}^{-2 k}-\frac{1}{2} \mathrm{e}^{2 k}\right)$	M1 A1	use of limits provided integration has taken place. Signs must be correct if brackets are not included. allow any correct form
	$\left(5 \mathrm{e}^{2 k}-\frac{1}{2} \mathrm{e}^{-2 k}\right)\left(5 \mathrm{e}^{-2 k}-\frac{1}{2} \mathrm{e}^{2 k}\right)=-60$ or $\frac{11}{2} \mathrm{e}^{2 k}-\frac{11}{2} \mathrm{e}^{-2 k}=-60$	B1	correct expression from (ii) either simplified or unsimplified equated to -60 , must be first line seen.
	leading to $11 e^{2 k}-11 e^{-2 k}+120=0$	DB1	must be convinced as AG
(iv)	$\begin{aligned} & 11 y^{2}+120 y-11=0 \\ & (11 y-1)(y+11)=0 \end{aligned}$ leading to	M1	attempt to obtain a quadratic equation in y or $\mathrm{e}^{2 k}$ and solve to get y or $\mathrm{e}^{2 k}$ (only need positive solution)
	$k=\frac{1}{2} \ln \frac{1}{11}, \ln \frac{1}{\sqrt{11}}, \quad-\ln \sqrt{11},-\frac{1}{2} \ln 11$	$\begin{gathered} \text { DM1 } \\ \text { A1 } \end{gathered}$	attempt to deal with e to get $k=$. any of given answers only.

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

9	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4-6 \sin 2 x$ When $x=\frac{\pi}{4}, y=\pi$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \text { so gradient of normal }=\frac{1}{2}$ Normal equation $y-\pi=\frac{1}{2}\left(x-\frac{\pi}{4}\right)$ When $x=0, y=\frac{7 \pi}{8}$ When $y=0, x=-\frac{7 \pi}{4}$ Area $=\frac{1}{2} \times \frac{7 \pi}{4} \times \frac{7 \pi}{8}=\frac{49 \pi^{2}}{64}$	M1,A1 B1 DM1 DM1 A1 A1 B1ft	M1 for attempt to differentiate A1 for all correct for y for substitution of $x=\frac{\pi}{4}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and use of ' $m_{1} m_{2}=-1$ ', dependent on first M1 correct attempt to obtain the equation of the normal, dependent on previous DM mark must be terms of π must be terms of π Follow through on their x and y intercepts; must be exact values
10 (a) (b) (c)	$\begin{aligned} & \begin{array}{l} \cos ^{2} 3 x=\frac{1}{2}, \quad \cos 3 x=(\pm) \frac{1}{\sqrt{2}} \\ 3 x=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ} \end{array} \\ & \quad \begin{array}{l} x=15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ} \end{array} \\ & 3\left(\cot ^{2} y+1\right)+5 \cot y-5=0 \\ & \text { Leading to } \begin{array}{r} 3 \cot ^{2} y+5 \cot y-2=0 \text { or } \\ 2 \tan ^{2} y-5 \tan y-3=0 \end{array} \\ & \begin{array}{r} (3 \cot y-1)(\cot y+2)=0 \text { or } \\ \quad(\tan y-3)(2 \tan y+1)=0 \end{array} \\ & \begin{array}{r} \tan y=3, \quad \tan y=\frac{1}{2} \end{array} \\ & \begin{array}{r} y=71.6^{\circ}, 251.6^{\circ} \quad 153.4^{\circ}, 333.4^{\circ} \\ \sin \left(z+\frac{\pi}{3}\right)=\frac{1}{2} \\ z+\frac{\pi}{3}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6} \\ z=\frac{\pi}{2}, \frac{11 \pi}{6} \end{array} \\ & \text { (allow } 1.57,5.76) \end{aligned}$	A1,A1 M1 M1 M1 A1,A1 M1 A1 M1 A1	complete correct method, dealing with sec and 3, correctly A1 for each correct pair use of a correct identity to get an equation in terms of one trig ratio only for $\cot y=\frac{1}{\tan y}$ to obtain either a quadratic equation in $\tan y$ or solutions in terms of $\tan y$;allow where appropriate for solution of a quadratic equation in terms of either $\tan y$ or $\cot y$ A1 for each correct 'pair' completely correct method of solution one correct solution in range correct attempt to obtain a second solution within the range second correct solution (and no other)

