CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dom	damandant

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1	$k^{2} - 4(2k+5)$ (< 0) $k^{2} - 8k - 20$ (< 0) (k-10)(k+2) (< 0) critical values of 10 and -2 -2 < k < 10	M1 M1 A1 A1	use of $b^2 - 4ac$, (not as part of quadratic formula unless isolated at a later stage) with correct values for a , b and c Do not need to see < at this point attempt to obtain critical values correct critical values correct range
	Alternative 1: $\frac{dy}{dx} = 2(2k+5)x + k$	M1	attempt to differentiate, equate to zero and substitute <i>x</i> value back in to obtain a <i>y</i> value
	When $\frac{dy}{dx} = 0$, $x = \frac{-k}{2(2k+5)}$, $y = \frac{8k+20-k^2}{4(2k+5)}$ When $y = 0$, obtain critical values of 10 and -2 $-2 < k < 10$	M1 A1 A1	consider $y = 0$ in order to obtain critical values correct critical values correct range
	Alternative 2: $y = (2k+5) \left(\left(x + \frac{k}{2(2k+5)} \right)^2 - \frac{k^2}{4(2k+5)} \right) + 1$	M1	attempt to complete the square and consider $1 - \frac{k^2}{4(2k+5)}$
	Looking at $1 - \frac{k^2}{4(2k+5)} = 0$ leads to critical values of 10 and -2 $-2 < k < 10$	M1 A1 A1	attempt to solve above = to 0, to obtain critical values correct critical values correct range

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

r		1	I
2	$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$	M1	for $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$; allow when used
	$\sin^2\theta + \cos^2\theta$		$\sin \theta$, anow when used
	$=\frac{\frac{\sin\theta\cos\theta}{\sin\theta\cos\theta}}{\frac{1}{\sin\theta}}$	M1	dealing correctly with fractions in the numerator; allow when seen
	$=\frac{1}{\cos\theta}$	M1	use of the appropriate identity; allow when seen
	$= \sec \theta$	A1	must be convinced it is from completely correct work (beware missing brackets)
	Alternative:		
	$\tan^2\theta+1$		_
	$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\tan^2\theta + 1}{\tan\theta}}{\csc\theta}$	M1	for either $\tan \theta = \frac{1}{\cot \theta}$ or
			$\cot \theta = \frac{1}{\tan \theta}$ and
	2 .		$\csc\theta = \frac{1}{\sin\theta}$; allow when used
	$=\frac{\sec^2\theta}{\tan\theta\frac{1}{\sin\theta}}$	M1	dealing correctly with fractions in numerator; allow when seen
	$=\frac{\sec^2\theta}{\sec\theta}$	M1	use of the appropriate identity; allow when seen
	$= \sec \theta$	A1	must be convinced it is from completely correct work
3	$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$	B1	$\frac{1}{2}$ multiplied by a matrix
		B1	for matrix
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} 8 \\ 9 \end{pmatrix} $	M1	attempt to use the inverse matrix, must be pre-multiplication
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 6 \\ -4 \end{pmatrix} $		
	x = 3, y = -2	A1, A1	
	L	l	l .

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

4 (i)	Area = $ \left(\frac{1}{2} \times 12^2 \times 1.7 \right) + \left(\frac{1}{2} \times 12^2 \sin(2\pi - 1.7 - 2.4) \right) $	B1,B1	B1 for sector area, allow
		M1	unsimplified B1 for correct angle BOC, allow unsimplified correct attempt at area of triangle, allow unsimplified using their angle BOC (Their angle BOC must not be 1.7 or 2.4)
	= awrt 181	A1	012.1)
(ii)	$BC^{2} = 12^{2} + 12^{2} - (2 \times 12 \times 12 \cos 2.1832)$ or $BC = 2 \times 12 \times \sin\left(\frac{2\pi - 4.1}{2}\right)$	M1	correct attempt at <i>BC</i> , may be seen in (i), allow if used in (ii). Allow use of <i>their</i> angle <i>BOC</i> .
	BC = 21.296	A1	C
	Perimeter = $(12 \times 1.7) + 12 + 12 + 21.296$	B1 M1	for arc length, allow unsimplified for a correct 'plan' (an arc + 2 radii and BC)
	= 65.7	A1	(an are + 2 fault and Be)
5 (a) (i)	20160	B1	
(ii)	$3 \times {}^{6}P_{4} \times 2$	B1,B1	B1 for 6P_4 (must be seen in a
	= 2160	,	product) B1 for all correct, with no further working
(iii)	$5 \times 2 \times {}^{6}P_{4}$ $= 3600$	B1,B1 B1	B1 for ⁶ P ₄ (must be seen in a product) B1 for 5 (must be in a product) B1 for all correct, with no further working
	Alternative 1:	D2	
	${}^{6}C_{4} \times 5! \times 2$ = 3600	B2 B1	for ${}^6C_4 \times 5!$ for ${}^6C_4 \times 5! \times 2$
	Alternative 2:		7
	$\left({}^{7}P_{5} - {}^{6}P_{5}\right) \times 2$	B2	for $\binom{7}{5}P_5-\binom{6}{5}$
	= 3600	B1	for $(^7P_5 - ^6P_5) \times 2$
	Alternative 3:		
	$2!(^{6}P_{4} + (^{6}P_{1} \times ^{5}P_{3}) + (^{6}P_{2} \times ^{4}P_{2}) + (^{6}P_{3} \times ^{3}P_{1}) + ^{6}P_{4})$ = 3600	B2	4 terms correct or omission of 2! in each term
		B1	all correct

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

	(b) (i)	$^{14}C_4 \times ^{10}C_4$ or $^{14}C_8 \times ^8C_4$ (or numerical or factorial equivalent) = 210210	B1,B1	B1 for either ${}^{14}C_4$ or ${}^{14}C_8$ as part of a product B1 for correct answer, with no further working
	(ii)	${}^{8}C_{4} \times {}^{6}C_{4}$ = 1050	B1,B1	B1 for either 8C_4 or 6C_4 as part of a product B1 for correct answer with no further working
6	(i)	10ln4 or 13.9 or better	B1	
	(ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) \frac{20t}{t^2 + 4} - 4$		attempt to differentiate and equate to zero $\frac{20t}{t^2 + 4}$ or equivalent seen
		When $\frac{dx}{dt} = 0$, $\frac{20t}{t^2 + 4} = 4$ leading to $t^2 - 5t + 4 = 0$ t = 1, $t = 4$	DM1	attempt to solve their $\frac{dx}{dt} = 0$, must be a 2 or 3 term quadratic equation with real roots for both

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

(iii)	$If (v =) \frac{20t}{t^2 + 4} - 4$		
	$(a=) \frac{20(t^2+4)-20t(2t)}{(t^2+4)^2}$	M1	attempt to differentiate their $\frac{dx}{dt}$
	(t+4)	A1 A1	$20(t^2+4)$ $20t(2t)$
	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ or equivalent expression involving $-t^2$	A1	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$
	When acceleration is 0, $t = 2$ only	B1	t = 2, dependent on obtaining first and second A marks
	Alternative 1 for first 3 marks: $If(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	$(a=)\frac{\left(t^2+4\right) \left(20-8t\right)-\left(20t-4t^2-16\right) \left(2t\right)}{\left(t^2+4\right)^2}$	A1 A1	for $(t^2 + 4)(20 - 8t)$ for $(20t - 4t^2 - 16)(2t)$
	Alternative 2 for M1 mark: If $(v =) 20t(t^2 + 4)^{-1} - 4$ $(a =) 20t(-2t(t^2 + 4)^{-2}) + 20(t^2 + 4)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	Alternative 3 for the first 3 marks If $(v =) (20t - 4t^2 - 16)(t^2 + 4)^{-1}$ $(a =) (20t - 4t^2 - 16)(-2t(t^2 + 4)^{-2}) + (20 - 8t)(t^2 + 4)^{-1}$ Numerator = $-2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$	M1 A1 A1	attempt to differentiate their $\frac{dx}{dt}$ for $2t(20t - 4t^2 - 15)$ for $(20 - 8t)(t^2 + 4)$
7 (i)	$\overrightarrow{DA} = 3\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(ii)	$\overrightarrow{DB} = 7\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(iii)	$\overrightarrow{AX} = \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	B1	mark final answer, allow unsimplified
(iv)	$\overrightarrow{DX} = 3\mathbf{a} - \mathbf{b} + \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	M1 A1	their (i) + their (iii) or equivalent valid method or 3a - b + their (iii) Allow unsimplified

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

(v)	$3\mathbf{a} - \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b}) = \mu (7\mathbf{a} - \mathbf{b})$ Equate like vectors: $3 + 4\lambda = 7\mu$ $-1 + \lambda = -\mu$ leads to $\lambda = \frac{4}{11}$, $\mu = \frac{7}{11}$	M1 DM1 A1,A1	equating their (iv) and $\mu \times$ their (ii) for an attempt to equate like vectors and attempt to solve 2 linear equations for λ and μ
8 (i)	$5e^{2x} - \frac{1}{2}e^{-2k} (+c)$	B1, B1	B1 for each term, allow unsimplified
(ii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) - \left(5e^{-2k} - \frac{1}{2}e^{2k}\right)$	M1	use of limits provided integration has taken place. Signs must be correct if brackets are not included. allow any correct form
(iii)	$ \left(5e^{2k} - \frac{1}{2}e^{-2k}\right) \left(5e^{-2k} - \frac{1}{2}e^{2k}\right) = -60 $ or $ \frac{11}{2}e^{2k} - \frac{11}{2}e^{-2k} = -60 $	B1	correct expression from (ii) either simplified or unsimplified equated to – 60, must be first line seen.
	or equivalent leading to $11e^{2k} - 11e^{-2k} + 120 = 0$	DB1	must be convinced as AG
(iv)	$11y^{2} + 120y - 11 = 0$ $(11y - 1)(y + 11) = 0$ leading to $k = \frac{1}{2} \ln \frac{1}{11}, \ln \frac{1}{\sqrt{11}}, -\ln \sqrt{11}, -\frac{1}{2} \ln 11$	M1 DM1 A1	attempt to obtain a quadratic equation in y or e^{2k} and solve to get y or e^{2k} (only need positive solution) attempt to deal with e to get $k = 1$. any of given answers only.

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

9 $\frac{dy}{dx} = 4 - 6\sin 2x$ M1,A1 M1 for attempt to A1 for all corrections of the M1,A1 M2 for all corr	o differentiate
When $x = \frac{\pi}{4}$, $y = \pi$ B1 for y	
	of $x = \frac{\pi}{4}$ into their
$\frac{dy}{dx} \text{ and use of '}$ dependent on fir	
Normal equation $y - \pi = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$ DM1 correct attempt to equation of the roon previous DM	normal, dependent
When $x = 0$, $y = \frac{7\pi}{8}$ A1 must be terms of	f π
When $y = 0, x = -\frac{7\pi}{4}$ A1 must be terms of	fπ
Area = $\frac{1}{2} \times \frac{7\pi}{4} \times \frac{7\pi}{8} = \frac{49\pi^2}{64}$ B1ft Follow through eintercepts; must	-
10 (a) $\cos^2 3x = \frac{1}{2}$, $\cos 3x = (\pm)\frac{1}{\sqrt{2}}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t method, dealing
$x = 15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ}$ A1,A1 A1 for each corr	-
(b) $3(\cot^2 y + 1) + 5\cot y - 5 = 0$ Leading to $3\cot^2 y + 5\cot y - 2 = 0 \text{ or}$ M1 use of a correct is equation in term only	identity to get an s of one trig ratio
$2 \tan^2 y - 5 \tan y - 3 = 0$ $(3 \cot y - 1)(\cot y + 2) = 0 \text{ or}$ M1 for $\cot y = \frac{1}{\tan y}$	
$(\tan y - 3)(2 \tan y + 1) = 0$ quadratic equations in term where appropria	ns of tan y; allow te
$\tan y = 3$, $\tan y = \frac{1}{2}$ M1 for solution of a in terms of either	quadratic equation r tan y or cot y
$y = 71.6^{\circ}, 251.6^{\circ}$ 153.4°, 333.4° A1,A1 A1 for each corr	rect 'pair'
(c) $\sin\left(z + \frac{\pi}{3}\right) = \frac{1}{2}$ M1 completely correspond solution	ect method of
$z + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$ A1 one correct solution	tion in range
π 11 π	o obtain a second
(allow 1.57, 5.76) A1 second correct so other)	•