Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13
Paper 1
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Guidance
1 (i) (ii)	-27 $\begin{aligned} & 9-8 k=0 \\ & k=\frac{9}{8} \end{aligned}$ Or $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-3$ when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x=\frac{3}{4}$ so $k=\frac{9}{8}$ Or completing the square $\begin{aligned} & y=2\left(x-\frac{3}{4}\right)^{2}+k-\frac{9}{8} \\ & k=\frac{9}{8} \end{aligned}$	B1 M1 A1 M1 A1 M1 A1	for use of discriminant with a complete method to get to $k=$ for a complete method to get to $k=$ for a complete method to get to $k=$
2 (a) (b)	$2^{4(3 x-1)}=2^{3(x+2)}$ or $4^{2(3 x-1)}=4^{\frac{3}{2}(x+2)}$ or $8^{\frac{4}{3}(3 x-1)}=8^{x+2}$ or $16^{3 x-1}=16^{\frac{3}{4}(x+2)}$ leading to $x=\frac{10}{9} \quad$ cao $\begin{aligned} & p=\frac{5}{3} \\ & q=-2 \end{aligned}$	B1 M1 A1 B1 B1	B1 for a correct statement for equating indices

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
3	On x-axis, $2 x^{2}-7=1$ $x=2$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x}{2 x^{2}-7}$ When $x=2, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=8$ Gradient of normal $=-\frac{1}{8}$ Equation of normal $y=-\frac{1}{8}(x-2)$ Required form $x+8 y-2=0$	M1 A1 B1 M1 A1	for equating to 1 for attempt at perpendicular through their $(2,0)$, must be using $y=0$ must be equated to zero with integer coefficients
4 (a) (b)	$\begin{aligned} & \mathbf{A}^{2}=\left(\begin{array}{rr} 7 & -2 \\ -3 & 6 \end{array}\right) \\ & \mathbf{A}^{2}-2 \mathbf{B}=\left(\begin{array}{rr} 1 & -2 \\ -5 & 2 \end{array}\right) \\ & \left(\begin{array}{rr} 4 & 1 \\ 10 & 3 \end{array}\right)\binom{x}{y}=\binom{1}{1} \\ & \text { so }\binom{x}{y}=\frac{1}{2}\left(\begin{array}{rr} 3 & -1 \\ -10 & 4 \end{array}\right)\binom{1}{1} \\ & \text { leading to }\binom{x}{y}=\binom{1}{-3} \\ & x=1 \\ & y=-3 \end{aligned}$	B1 M1 A1 M1 DM1 A1 A1	for their $\mathbf{A}^{2}-2 \mathbf{B}$ for pre-multiplication by their inverse matrix DM1 for attempt at matrix multiplication Allow in matrix form
5 (i) (ii)	$\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right) & =\mathrm{e}^{4 x}-\left(\left(x \times 4 \mathrm{e}^{4 x}\right)+\mathrm{e}^{4 x}\right) \\ & =-4 x \mathrm{e}^{4 x} \\ \int_{0}^{\ln 2} x \mathrm{e}^{4 x} \mathrm{~d} x & =-\frac{1}{4}\left[\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right]_{0}^{\ln 2} \\ & =-\frac{1}{4}\left(\left(\frac{16}{4}-16 \ln 2\right)-\frac{1}{4}\right) \\ & =4 \ln 2-\frac{15}{16} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { B1FT } \\ \\ \text { B1 } \\ \text { M1 } \\ \hline \text { A1 } \end{gathered}$	$\text { for } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)=\mathrm{e}^{4 x}$ for attempt to differentiate a product for a correct product for correct final answer FT for use of their $\frac{1}{p} \times\left(\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right)$, must be numerical p, but $\neq 0$ for $\mathrm{e}^{4 \ln 2}=16$ for correct use of limits, must be an integral of the correct form

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
6 (i) (ii) (iii)	$2-\sqrt{5}<\mathrm{f}(x) \leqslant 2$ $\mathrm{f}^{-1}(x)=(2-x)^{2}-5$ Domain $2-\sqrt{5}<x \leqslant 2$ Range y or $-5 \leqslant \mathrm{f}^{-1}(x)<0$ $\begin{aligned} & \operatorname{fg}(x)=\mathrm{f}\left(\frac{4}{x}\right) \\ & =2-\sqrt{\frac{4}{x}+5} \end{aligned}$ leading to $x=-4$	B2 M1 A1 B1 B1 M1 DM1 A1	B1 for $\leqslant 2$ B1 for $2-\sqrt{5}<$ or awrt -0.24 Must be using $\mathrm{f}, \mathrm{f}(x)$ or $y, 2-\sqrt{5}<$, if not then B1 max for a correct method to find the inverse Must be using the correct variables for the B marks for correct order of functions for solution of equation
$7 \quad$ (i) (ii)	Finding an angle of 68.2° or 21.8° $\frac{4.5}{\sin 68.2}=\frac{2.4}{\sin \alpha}$ leading to $\alpha=29.7^{\circ}$ (allow ± 0.1) Direction is 82.1° to the bank, upstream(allow $\pm 0.1^{\circ}$) $\frac{4.5}{\sin 68.2}=\frac{2.4}{\sin 29.7}=\frac{v_{r}}{\sin 82.1}$ leading to $v_{r}=4.8$ $\text { time taken }=\frac{80.78}{4.8}=16.8$ Alternative method: Finding an angle of 68.2° or 21.8° $4.5^{2}=2.4^{2}+v_{r}^{2}-\left(2 \times 2.4 \times v_{r} \cos 68.2\right)$ leading to $v_{r}=4.8$ Use of sine rule to obtain angle and direction to obtain direction is 82.1° to the bank, upstream Use of time taken $=\frac{80.78}{4.8}=16.8$	B1 B1 B1 B1 B1 B1 M1 A1 B1 B1 B1 B1 B1 B1 M1 A1	for the sine rule for the sine rule for resultant velocity for attempt to find $A B$ and hence the time taken for correct use of the cosine rule for resultant velocity for use of the sine rule for $\alpha=29.7^{\circ}$ for 82.1° for attempt to find $A B$ and hence the time taken

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
8 (i)	$\begin{aligned} & y-6=-\frac{4}{12}(x+8) \\ & (3 y+x=10) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	for a correct method allow unsimplified
(ii)	$\begin{aligned} & y-7=3(x+1) \\ & (y=3 x+10) \end{aligned}$	DM1 A1	for attempt at a perpendicular line using $(-1,7)$ allow unsimplified
(iii)	point of intersection $(-2,4)$ which is the midpoint of $A B$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct
	Alternative method: Midpoint $(-2,4)$ Verification that this point lies on $C P$.	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	for attempt to find midpoint for full verification for all correct
(iv)	$C P=\sqrt{10} \text { or } 3.16$	B1	
(v)	$\begin{aligned} \text { Area } & =\frac{1}{2} \times \sqrt{10} \times 4 \sqrt{10} \\ & =20 \end{aligned}$	M1 A1	for correct method using $\boldsymbol{C P}$ for 19.9-20.1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
$\begin{array}{ll}9 & \text { (i) } \\ \\ & \\ \\ \\ \\ \\ & \text { (ii) }\end{array}$	$\begin{aligned} & 2 \cos x \cot x=\cot x+2 \cos x \\ & 2 \cos x \frac{\cos x}{\sin x}+1=\frac{\cos x}{\sin x}+2 \cos x \\ & 2 \cos ^{2} x+\sin x=\cos x+2 \cos x \sin x \\ & 2 \cos ^{2} x-2 \cos x \sin x=\cos x-\sin x \\ & 2 \cos x(\cos x-\sin x)=\cos x-\sin x \\ & (2 \cos x-1)(\cos x-\sin x)=0 \end{aligned}$ Alternative method: $a \cos ^{2} x-a \cos x \sin x-b \cos x$ $+b \sin x=0$ $a \cos x \cot x-a \cos x-b \cot x+b=0$ $a=2, \quad b=1$ $(2 \cos x-1)(\cos x-\sin x)=0$ $\cos x=\frac{1}{2}, \tan x=1$ $x=\frac{\pi}{3}, x=\frac{\pi}{4}$ Alternative method: $(2 \cos x-1)(\cot x-1)=0$ Leading to $\cos x=\frac{1}{2}, \tan x=1$ $x=\frac{\pi}{3}, x=\frac{\pi}{4}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { M1 } \\ \text { A1,A1 } \end{gathered}$	for use of $\cot x=\frac{\cos x}{\sin x}$ for both terms for multiplication throughout by $\sin x$ for attempt to factorise for completely correct solution www for expansion of RHS for division by $\sin x$ for comparing like terms to obtain both a and b for both correct www for either A1 for each, penalise extra solutions within the range by withholding the last A mark for attempt to factorise the original equation and attempt to solve A1 for each, penalise extra solutions within the range by withholding the last A mark
(i) (ii) (iii)	$\begin{aligned} & \mathrm{f}(-2)=-32-2 k+p=0 \\ & \mathrm{f}^{\prime}\left(\frac{1}{2}\right)=\frac{12}{4}+k=0 \end{aligned}$ leading to $k=-3$ and $p=26$ $(x+2)\left(4 x^{2}-8 x+13\right)$ Showing that $4 x^{2}-8 x+13=0$ has no real roots so $x=-2$ only www	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { B1FT } \\ \text { B1 } \\ \text { M1, } \\ \text { A1 } \end{gathered}$	for attempt at $\mathrm{f}(-2)$ for attempt at $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)$ A1 for each FT for their $\frac{p}{2}$ all correct M1 for a valid attempt at solution of equation leading to no solution or consideration of the discriminant

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
11 (i)	$\begin{aligned} & A B=2 r \sin \theta \\ & \text { or } \sqrt{r^{2}+r^{2}-2 r^{2} \cos 2 \theta} \\ & \text { or } \frac{r \sin 2 \theta}{\sin \left(\frac{\pi}{2}-\theta\right)} \\ & \text { or } \frac{r \sin 2 \theta}{\cos \theta} \end{aligned}$	B1	
(ii)	$\begin{aligned} & 2 r \sin \theta+2 r \theta=20 \\ & r=\frac{10}{\theta+\sin \theta} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	for use of (i) + arc length $=20$, oe must be convinced
(iii)	$\frac{\mathrm{d} r}{\mathrm{~d} \theta}=-\frac{10(1+\cos \theta)}{(\theta+\sin \theta)^{2}}$ When $\theta=\frac{\pi}{6}, \frac{\mathrm{~d} r}{\mathrm{~d} \theta}=-17.8$	$\begin{gathered} \text { M1 } \\ \mathbf{A 2 , 1 , 0} \\ \\ \hline \mathbf{A 1} \end{gathered}$	for a correct attempt to differentiate -1 each error allow awrt -17.8
(iv)	$\begin{aligned} & \frac{\mathrm{d} r}{\mathrm{~d} t}=15 \\ & \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} t} \div \frac{\mathrm{d} r}{\mathrm{~d} \theta} \\ & \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-0.842 \end{aligned}$	B1 M1 A1	may be implied for use of $\frac{15}{\text { their (iii) }}$ allow -0.84 or -0.843

