

ADDITIONAL MATHEMATICS

0606/22 May/June 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

n Answer	Marks	Guidance
$(2k)^{2} - 4 (1)(4k - 3) [< 0]$ Correct completion to given inequality $k^{2} - 4k + 3 < 0$ isw	M1 A1	clear attempt at $b^2 - 4ac$
Critical values 1 and 3 soi 1 < k < 3 as final answer	M1 A1	May be implied by incorrect inequalities
Clear attempt at quotient rule or equivalent product rule	M1	condone omission of brackets
$\left\lfloor \frac{dy}{dx} = \right\rfloor \frac{14}{(3-x)^2}$ or $\left\lfloor \frac{dy}{dx} = \right\rfloor \frac{14}{x^2 - 6x + 9}$ cao or correct simplified equivalent	A1	allow recovery from bracketing errors or omissions if implied in correct work to the correct answer
[y = 9] x = 2	B 1	
$\left \frac{0.07}{\delta x} \approx \left(their \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=2} \right) \text{oe}$	M1	condone $\frac{0.07}{\delta x} = \left(their \frac{dy}{dx} \Big _{x=2} \right)$
0.005 oe	A1	not from wrong working; answer only does not score
Any one of:	M2	M1 for $\begin{bmatrix} {}^{6}C_{0} \times \end{bmatrix} {}^{7}C_{3}$
$\begin{bmatrix} {}^{6}C_{0} \times \end{bmatrix} {}^{7}C_{3} + {}^{6}C_{1} \times {}^{7}C_{2}$		or ${}^{6}C_{1} \times {}^{7}C_{2}$
or $35 + 126$ or $^{13}C_{7} - {}^{6}C_{7} \times {}^{7}C_{7} - {}^{6}C_{7}$		or ${}^{13}C_3 - {}^{6}C_2 \times {}^{7}C_1$
or $286 - 105 - 20$		or ${}^{6}C_{3} - {}^{6}C_{3}$
		or for the numerical equivalent of one of
161	A1	these calculations If M0 then B3 for answer only of 161
	n Answer $(2k)^{2} - 4(1)(4k - 3) [< 0]$ Correct completion to given inequality $k^{2} - 4k + 3 < 0$ isw Critical values 1 and 3 soi 1 < k < 3 as final answer Clear attempt at quotient rule or equivalent product rule $\left[\frac{dy}{dx} = \right] \frac{14}{(3-x)^{2}}$ or $\left[\frac{dy}{dx} = \right] \frac{14}{x^{2} - 6x + 9}$ cao or correct simplified equivalent [y = 9] x = 2 $\frac{0.07}{\delta x} \approx \left(their \frac{dy}{dx} \Big _{x=2} \right)$ oe 0.005 oe Any one of: $\left[{}^{6}C_{0} \times \right] {}^{7}C_{3} + {}^{6}C_{1} \times {}^{7}C_{2}$ or ${}^{13}C_{3} - {}^{6}C_{2} \times {}^{7}C_{1} - {}^{6}C_{3}$ or ${}^{286 - 105 - 20$	nAnswerMarks $(2k)^2 - 4(1)(4k - 3) [< 0]$ Correct completion to given inequality $k^2 - 4k + 3 < 0$ iswM1 A1Critical values 1 and 3 soi $1 < k < 3$ as final answerM1 A1Clear attempt at quotient rule or equivalent product rule $\left[\frac{dy}{dx}=\right]\frac{14}{(3-x)^2}$ M1 A1or $\left[\frac{dy}{dx}=\right]\frac{14}{x^2-6x+9}$ cao or correct simplified equivalent $\left[y=9\right]x=2$ B1 M1 A1 $0.07 \approx \left(their \frac{dy}{dx}\right _{x=2}\right)$ oe 0.005 oeM1 A1Any one of: $\left[\frac{^6C_0 \times]^7C_3 + ^6C_1 \times ^7C_2}{or 35 + 126} or \frac{^{13}C_3 - ^6C_2 \times ^7C_1 - ^6C_3}{or 286 - 105 - 20}$ M2161A1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Q	uestion	Answer	Marks	Guidance
4	(i)	$2(2)^3 - 3(2)^2 + 2q + 56 = 0$ with one correct interim step leading to $q = -30$	B1	allow for only $16 - 12 + 2q + 56 = 0$ q = -30
				NB = 0 must be seen or may be implied by e.g. $-60 = 2q$ or 60 = -2q;
				or convincingly showing $2(2)^3 - 3(2)^2 - 30(2) + 56 = 0$; allow for only 16 - 12 + 2(-30) + 56 = 0
				or correct synthetic division at least as far as $2 \begin{array}{ c c c c c c c c c c c c c c c c c c c$
				2 1 q+2 0 then $q = -30$
	(ii)	$2x^{2} + x - 28$ (x-2)(2x-7)(x+4)	B2 M1	B1 for any two terms correct For factorising the correct equation; condone = 0; condone $(2x-7)(x+4)$ only for M1 but for A1 must see all 3 factors in this part; do not allow $\left(x-\frac{7}{2}\right)$
		x = 2, x = -4, x = 3.5 oe	A1	not from wrong working; answers only do not score
5	(i)	(2, 8)	B1, B1	
	(ii)	$\frac{their8 - 0}{their2 - p} = -2 \text{ or better}$	M1	Condone $\frac{their8 - 0}{their2 - n} = \frac{-1}{their \text{ gradient } AB} \text{ oe}$
		[<i>p</i> =] 6	A1	nen 2 p men gradient no

i uge i

Mark Scheme Cambridge IGCSE – May/June 2016

Syllabus	Paper
0606	22

Qı	uestion	Answer	Marks	Guidance
	(iii)	$[MB =]\sqrt{(6 - their 2)^2 + (10 - their 8)^2}$	M1	implied by $[MB =]\sqrt{20}$ or
		or $\left[\frac{1}{2}AB = \right]\frac{1}{2}\sqrt{(6-2)^2 + (10-6)^2}$		$\left[\frac{1}{2}AB = \right]\frac{1}{2}\sqrt{80}$ e.g. 4.47,
		soi $[MC =]\sqrt{(their 2 - their p)^2 + (their 8 - 0)^2}$		or $[MC =]\sqrt{80}$ or e.g. 8.94 or 63.4° or equivalents
		or $\tan[\dots] = \frac{8}{4}$ soi		
		$4.47^{2} = 8.94^{2} + 10^{2} - 2(8.94)(10) \cos[]$ or $8.94^{2} = 10^{2} + 10^{2} - 2(10)(10) \cos[]$		
		$\sin^{-1}\left(\frac{\sqrt{20}}{10}\right)$ oe soi	M1	$\operatorname{or} \cos^{-1}\left(\frac{\sqrt{80}}{10}\right)$
				or $\tan^{-1}\left(\frac{\sqrt{20}}{\sqrt{80}}\right)$
				or $\tan^{-1}\left(\frac{4}{8}\right)$
				or $90 - \tan^{-1}\left(\frac{8}{4}\right)$
				or equivalent complete correct method; implies first M1
		26.56 to 26.6° or 0.4636 to 0.464 rads cao	A1	Not from wrong working
6	(i)	Valid explanation	B1	e.g. arc length is greater than the radius or 7 is greater than 5
	(ii)	$7 = 5\theta$ $\theta = 1.4 \text{ oe}$	M1 A1	implies M1
	(iii)	$\frac{1}{2} \times 5^2 \times their$ 1.4 oe	M1	
		17.50e	A1	

|--|

Mark Scheme Cambridge IGCSE – May/June 2016

SyllabusPaper060622

Question	Answer	Marks	Guidance
(iv)	$[\text{triangle area} =]\frac{1}{2} \times 5^2 \times \sin \text{their} 1.4$ or 12.3 to 12.32 or for $[\frac{1}{2} \times \text{base} \times \text{height}=]$ $\frac{1}{2} \times 6.4[4] \times 3.8[2]$ oe	M1	may be embedded in a difference calculation
	5.18 to 5.2 inclusive	A1	implies M1
7 (i)	$ \begin{pmatrix} 12 & 15 \\ 9 & 6 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} $ soi	M1	if no method shown, may be implied by their answer with at least 2 correct elements
	$ \begin{pmatrix} 16 & 17 \\ 10 & 9 \end{pmatrix} $	A1	
(ii)	$det\mathbf{A} = 4 \times 2 - 3 \times 5 = -7$ or $det\mathbf{B} = 4 \times 3 - 2 \times 1 = 10$	B1	allow for e.g. $(4 \times 2 - 3 \times 5) \times (4 \times 3 - 2 \times 1) = -70$
			or det $A = 8 - 15 = -7$
	(21, 22)		or $det \mathbf{B} = 12 - 2 = 10$
	$\mathbf{AB} = \begin{pmatrix} 21 & 23\\ 14 & 12 \end{pmatrix}$	B2	or B1 for two elements correct
	$det(AB) = 21 \times 12 - 23 \times 14 = -70$	B 1	allow for $det(AB) = 252 - 322 = -70$
			For full marks must conclude that det AB = det A × det B or show the product $-7 \times 10 = -70$
			otherwise max 3 marks
(iii)	$\frac{1}{their \det \mathbf{AB}} \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix} \text{ isw}$	B2	correct or correct FT ; FT <i>their</i> AB and <i>their non-zero</i> det AB ;
			<i>their</i> AB must be an attempt at a matrix product e.g. $\begin{pmatrix} 16 & 10 \\ 3 & 6 \end{pmatrix}$
			B1 for $\frac{1}{their \det AB} \times their$
			or for $k \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix}$

Page 6

Mark Scheme Cambridge IGCSE – May/June 2016

Syllabus	Paper
0606	22

Question	Answer	Marks	Guidance
8	Eliminates y e.g. $4 + \frac{5}{15x + 10} + \frac{3}{x} = 0$ or eliminates x e.g. $4 + \frac{5}{y} + \frac{3}{(y - 10)/15} = 0$	M1	allow even after incorrect rearrangement of the equation of the curve (dependent on resulting equation still in terms of x and y); condone substitution of e.g. $\frac{y+10}{15}$
	Rearrange to a 3-term quadratic $60x^2 + 90x + 30 = 0$ oe or $4y^2 + 10y - 50 = 0$ oe	M1 A1	condone sign slips/arithmetic slips
	Factorise or solve 3-term quadratic	M1	
	$x = -\frac{1}{2}, x = -1$ isw	A1	or $y = 2\frac{1}{2}$, $y = -5$
	$y = 2\frac{1}{2}, y = -5$ isw	A1	or $x = -\frac{1}{2}, x = -1$
			If final A marks not awarded then A1 for a correct x , y pair
9 (a)	$\frac{x^2}{2} + x - \frac{1}{x}(+c)$ isw	B3	B1 for each term allow $\frac{x^2}{2} + x + \frac{x^{-1}}{-1}(+c)$ isw for B3
(b) (i)	$k\cos(5x + \pi)$ where $k < 0$ or $\frac{\cos(5x + \pi)}{5}$	M1	
	$\frac{-\cos(5x+\pi)}{5}(+c)$	A1	
(ii)	$\frac{-\cos(5(0) + \pi)}{5} - \frac{-\cos(5(-\pi/5) + \pi)}{5}$ or $\frac{-\cos(\pi)}{5} - \left(\frac{-\cos(0)}{5}\right)$	M1	correct substitution of the given limits into <i>their</i> expression of the form $k\cos(5x + \pi)$, dep on M1 in (b)(i)
	0.4 oe	A1	answer only does not score
10 (a)	2 = p - q and 14 = 4p - 2q oe p = 5 q = 3	M1 A1 A1	
(b)	Factorise $10^{2x} - 2(10^x) - 24 [= 0]$ or factorise $u^2 - 2u - 24 [= 0]$	M1	or applies the formula or completes the square
	$10^{x} = 6$ x = lg6 cao as final answer	A1 A1	ignore $10^x = -4$ for this mark or exact equivalent

Page 1	7
--------	---

Mark Scheme Cambridge IGCSE – May/June 2016

SyllabusPaper060622

Question	Answer	Marks	Guidance
(c)	$\frac{x+1}{x} = 2^3 \text{ oe www}$	M2	combines logs and anti-logs or B1 for one correct log move
			e.g. $\log_2\left(\frac{x+1}{x}\right) = 3$
			or $\log_2(x+1) - \log_2(x) = \log_2 8$
	1		or $\log_2(x+1) - \log_2(x) = 3\log_2 2$
	$x = \frac{1}{7}$ or 0.143 or 0.1428 to 0.1429	A1	
11 (a)	Valid method	M1	Completing the square as far as
			e.g. constant $-\left(x-\frac{1}{2}\right)^2$
			or calculus as far as $1 - 2x = 0$
			or finding roots $x = 0$ and $x = 1$ and using symmetry soi
	when $x = \frac{1}{2}$	A1	Implies M1 if not clearly from wrong working
	[greatest value =] $\frac{1}{4}$	B 1	
(b)	Valid comment e.g. when $x \ge 1$, f' is always	B 1	Allow e.g. a sketch with a comment such as the curve is one-one [when $x \ge 1$]
	decreasing		or e.g. the curve is one-one when $x > \frac{1}{2}$
(c) (i)	$k(10) = 8$ or $5 + \sqrt{10 - 1} = 8$ or stating $h(8)$	M1	$\operatorname{or}[\operatorname{hk}(x) =] \lg(7 + \sqrt{x - 1})$
	h(8) = 1 or lg(8+2) = 1 cao	A1	$[hk(10) =] lg(7 + \sqrt{10 - 1}) = 1$
(ii)	$\left(y-5\right)^2 = x-1$	M1	$\operatorname{or}(x-5)^2 = y-1$
	$k^{-1}(x) = (x-5)^2 + 1$ isw	A1	
	or $k^{-1}(x) = x^2 - 10x + 26$ isw 5 < x < 15	B1. B1	B1 for $5 < x$ of and B1 for $x < 15$ of
		,	allow (5, 15): one mark for each limit of the
			interval;
			if B0 then SC1 for $5 \le x \le 15$ or '5 to 15' or [5, 15] etc.
	$1 < k^{-1}(x) < 101$	B1	allow (1, 101)

Page 8	Mark Scheme		Paper
	Cambridge IGCSE – Mav/June 2016	0606	22

Question	Answer	Marks	Guidance
12 (i)	$8(1 - \cos^2 A) + 2\cos A = 7 \text{ or better}$	B1	
	Solves or factorises <i>their</i> 3-term quadratic in cos <i>A</i>	M1	
	60, 104.477 rounded or truncated to 1 dp or more;	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras
(ii)	$\sin(3B+1) = 0.4 \text{ soi}$	B1	may be implied by $\frac{1}{\sin(3B+1)} = 2.5$
	[3B + 1 =] 0.41 or better	M1	implies B1
	0.577, 1.9[0], 2.67 or 0.57669, 1.89823 , 2.67108 rounded or truncated to 4 or more sf	A2	with no extras in range;or A1 for any one correct ignoring extrasIf M0 then B2 for all 3 correct angles foundor B1 for 1 or 2 correct angles found