Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22
Paper 2
May/June 2016
MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	22

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Guidance \\
\hline \begin{tabular}{l}
1 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
(2 k)^{2}-4(1)(4 k-3)[<0]
\] \\
Correct completion to given inequality
\[
k^{2}-4 k+3<0 \text { isw }
\] \\
Critical values 1 and 3 soi \(1<k<3\) as final answer
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
clear attempt at \(b^{2}-4 a c\) \\
May be implied by incorrect inequalities
\end{tabular} \\
\hline \begin{tabular}{l}
2 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Clear attempt at quotient rule or equivalent product rule \\
\(\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{14}{(3-x)^{2}}\) \\
or \(\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{14}{x^{2}-6 x+9}\) cao or correct simplified equivalent
\[
\begin{aligned}
\& {[y=9] x=2} \\
\& \frac{0.07}{\delta x} \approx\left(\text { their }\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=2}\right) \mathrm{oe} \\
\& 0.005 \mathrm{oe}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
condone omission of brackets \\
allow recovery from bracketing errors or omissions if implied in correct work to the correct answer
\[
\text { condone } \frac{0.07}{\delta x}=\left(\text { their }\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=2}\right)
\] \\
not from wrong working; answer only does not score
\end{tabular} \\
\hline 3 \& \begin{tabular}{l}
Any one of:
\[
\left[{ }^{6} C_{0} \times\right]^{7} C_{3}+{ }^{6} C_{1} \times{ }^{7} C_{2}
\] \\
or \(35+126\) \\
or \({ }^{13} C_{3}-{ }^{6} C_{2} \times{ }^{7} C_{1}-{ }^{6} C_{3}\) \\
or 286-105-20
\end{tabular} \& M2

A1 \& | $\begin{aligned} & \text { M1 for }\left[{ }^{6} C_{0} \times\right]^{7} C_{3} \\ & \text { or }{ }^{6} C_{1} \times{ }^{7} C_{2} \\ & \text { or }{ }^{13} C_{3}-{ }^{6} C_{2} \times{ }^{7} C_{1} \\ & \text { or }{ }^{13} C_{3}-{ }^{6} C_{3} \\ & \text { or }{ }^{6} C_{2} \times{ }^{7} C_{1}+{ }^{6} C_{3} \end{aligned}$ |
| :--- |
| or for the numerical equivalent of one of these calculations |
| If M0 then B3 for answer only of 161 |

\hline
\end{tabular}

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	22

Question	Answer	Marks	Guidance
4 (i)	$2(2)^{3}-3(2)^{2}+2 q+56=0$ with one correct interim step leading to $q=-30$	B1	allow for only $16-12+2 q+56=0$ $q=-30$ $\mathrm{NB}=0$ must be seen or may be implied by e.g. $-60=2 q$ or $60=-2 q ;$ or convincingly showing $2(2)^{3}-3(2)^{2}-30(2)+56=0$; allow for only $16-12+2(-30)+56=0$ or correct synthetic division at least as far as $\begin{array}{c\|cccc} 2 & \begin{array}{ccc} 2 & -3 & q \end{array} & 56 \\ & 4 & 2 & 2 q+4 \\ \hline 2 & 1 & q+2 & 0 \end{array}$ then $q=-30$
(ii)	$\begin{aligned} & 2 x^{2}+x-28 \\ & (x-2)(2 x-7)(x+4) \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { M1 } \end{gathered}$	B1 for any two terms correct For factorising the correct equation; condone $=0$; condone $(2 x-7)(x+4)$ only for M1 but for A1 must see all 3 factors in this part; do not allow $\left(x-\frac{7}{2}\right)$
	$x=2, x=-4, x=3.5$ oe	A1	not from wrong working; answers only do not score
5 (i)	$(2,8)$	B1, B1	
	$\frac{\text { their } 8-0}{\text { their } 2-p}=-2$ or better $[p=] 6$	M1 A1	Condone $\frac{\text { their } 8-0}{\text { their } 2-p}=\frac{-1}{\text { their gradient } A B}$

Question	Answer	Marks	Guidance
(iii)	$\begin{aligned} & {[M B=] \sqrt{(6-\text { their } 2)^{2}+(10-\text { their } 8)^{2}}} \\ & \text { or }\left[\frac{1}{2} A B=\right] \frac{1}{2} \sqrt{(6--2)^{2}+(10-6)^{2}} \end{aligned}$ soi or $[M C=] \sqrt{(\text { their } 2-\text { their } p)^{2}+(\text { their } 8-0)^{2}}$ soi or $\tan [\ldots]=\frac{8}{4}$ soi or $4.47^{2}=8.94^{2}+10^{2}-2(8.94)(10) \cos [\ldots]$ or $8.94^{2}=10^{2}+10^{2}-2(10)(10) \cos [\ldots]$ $\sin ^{-1}\left(\frac{\sqrt{20}}{10}\right)$ oe soi	M1 M1 A1	implied by $[M B=] \sqrt{20}$ or $\left[\frac{1}{2} A B=\right] \frac{1}{2} \sqrt{80}$ e.g. 4.47, $\operatorname{or}[M C=] \sqrt{80}$ or e.g. 8.94 or 63.4° or equivalents or $\cos ^{-1}\left(\frac{\sqrt{80}}{10}\right)$ or $\tan ^{-1}\left(\frac{\sqrt{20}}{\sqrt{80}}\right)$ or $\tan ^{-1}\left(\frac{4}{8}\right)$ or $90-\tan ^{-1}\left(\frac{8}{4}\right)$ or equivalent complete correct method; implies first M1 Not from wrong working
6 (i) (ii) (iii)	Valid explanation $\begin{aligned} & 7=5 \theta \\ & \theta=1.4 \mathrm{oe} \\ & \\ & \frac{1}{2} \times 5^{2} \times \text { their } 1.4 \mathrm{oe} \\ & 17.5 \mathrm{oe} \end{aligned}$	B1 M1 A1 M1 A1	e.g. arc length is greater than the radius or 7 is greater than 5 implies M1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	22

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Guidance \\
\hline (iv) \& \begin{tabular}{l}
[triangle area \(=] \frac{1}{2} \times 5^{2} \times \sin\) their 1.4 \\
or 12.3 to 12.32 \\
or for \(\left[\frac{1}{2} \times\right.\) base \(\times\) height \(\left.=\right]\) \\
\(\frac{1}{2} \times 6.4[4 \ldots] \times 3.8[2 \ldots]\) oe \\
5.18 to 5.2 inclusive
\end{tabular} \& M1

A1 \& | may be embedded in a difference calculation |
| :--- |
| implies M1 |

\hline \multirow[t]{8}{*}{$7 \begin{array}{rr} & \text { (i) } \\ & \\ & \text { (ii) } \\ \\ \\ \\ \\ \text { (iii) }\end{array}$} \& \multirow[t]{2}{*}{$\left(\begin{array}{cc}12 & 15 \\ 9 & 6\end{array}\right)+\left(\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right)$ soi

$$
\left(\begin{array}{cc}
16 & 17 \\
10 & 9
\end{array}\right)
$$} \& M1 \& \multirow[t]{2}{*}{if no method shown, may be implied by their answer with at least 2 correct elements}

\hline \& \& A1 \&

\hline \& $$
\begin{aligned}
& \operatorname{det} \mathbf{A}=4 \times 2-3 \times 5=-7 \\
& \text { or } \operatorname{det} \mathbf{B}=4 \times 3-2 \times 1=10
\end{aligned}
$$ \& B1 \& allow for e.g.

$$
(4 \times 2-3 \times 5) \times(4 \times 3-2 \times 1)=-70
$$

\hline \& \& \& | or $\operatorname{det} \mathbf{A}=8-15=-7$ |
| :--- |
| or $\operatorname{det} \mathbf{B}=12-2=10$ |

\hline \& $$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ll}
21 & 23 \\
14 & 12
\end{array}\right) \\
& \operatorname{det}(\mathbf{A B})=21 \times 12-23 \times 14=-70
\end{aligned}
$$ \& B2

B1 \& | or B1 for two elements correct |
| :--- |
| allow for $\operatorname{det}(\mathbf{A B})=252-322=-70$ |

\hline \& \& \& | For full marks must conclude that $\operatorname{det} \mathbf{A} \mathbf{B}=\operatorname{det} \mathbf{A} \times \operatorname{det} \mathbf{B}$ |
| :--- |
| or show the product $-7 \times 10=-70$ |
| otherwise max 3 marks |

\hline \& \[
\frac{1}{their \operatorname{det} \mathbf{A B}} \times their\left($$
\begin{array}{rr}
12 & -23 \\
-14 & 21
\end{array}
$$\right) isw

\] \& B2 \& | correct or correct FT; |
| :--- |
| FT their AB and their non-zero $\operatorname{det} \mathbf{A B}$; their $\mathbf{A B}$ must be an attempt at a matrix product e.g. $\left(\begin{array}{cc}16 & 10 \\ 3 & 6\end{array}\right)$ |

\hline \& \& \& $$
\begin{aligned}
& \text { B1 for } \frac{1}{\text { their } \operatorname{det} \mathbf{A B}} \times \text { their }(\quad) \\
& \text { or for } k \times \text { their }\left(\begin{array}{rr}
12 & -23 \\
-14 & 21
\end{array}\right)
\end{aligned}
$$

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	22

Question	Answer	Marks	Guidance
8	Eliminates $y \quad$ e.g. $4+\frac{5}{15 x+10}+\frac{3}{x}=0$ or eliminates x $\text { e.g. } 4+\frac{5}{y}+\frac{3}{(y-10) / 15}=0$ Rearrange to a 3-term quadratic $60 x^{2}+90 x+30=0$ oe or $4 y^{2}+10 y-50=0$ oe Factorise or solve 3-term quadratic $\begin{aligned} & x=-\frac{1}{2}, \quad x=-1 \text { isw } \\ & y=2 \frac{1}{2}, \quad y=-5 \text { isw } \end{aligned}$	M1 M1 A1 M1 A1 A1	allow even after incorrect rearrangement of the equation of the curve (dependent on resulting equation still in terms of x and y); condone substitution of e.g. $\frac{y+10}{15}$ condone sign slips / arithmetic slips or $y=2 \frac{1}{2}, y=-5$ or $x=-\frac{1}{2}, x=-1$ If final A marks not awarded then $\mathbf{A 1}$ for a correct x, y pair
(a) (b) (i) (ii)	$\frac{x^{2}}{2}+x-\frac{1}{x}(+c) \quad$ isw $\begin{aligned} & k \cos (5 x+\pi) \text { where } k<0 \\ & \text { or } \frac{\cos (5 x+\pi)}{5} \\ & \frac{-\cos (5 x+\pi)}{5}(+c) \\ & \frac{-\cos (5(0)+\pi)}{5}-\frac{-\cos (5(-\pi / 5)+\pi)}{5} \\ & \text { or } \frac{-\cos (\pi)}{5}-\left(\frac{-\cos (0)}{5}\right) \\ & 0.4 \text { oe } \end{aligned}$	B3 M1 A1 M1 A1	B1 for each term allow $\frac{x^{2}}{2}+x+\frac{x^{-1}}{-1}(+c) \quad$ isw for $\mathbf{B 3}$ correct substitution of the given limits into their expression of the form $k \cos (5 x+\pi)$, dep on M1 in (b)(i) answer only does not score
10 (a) (b)	$\begin{aligned} 2 & =p-q \text { and } 14=4 p-2 q \text { oe } \\ p & =5 \\ q & =3 \end{aligned}$ Factorise $10^{2 x}-2\left(10^{x}\right)-24[=0]$ or factorise $u^{2}-2 u-24[=0]$ $10^{x}=6$ $x=\lg 6 \quad$ cao as final answer	M1 A1 A1 M1 A1 A1	or applies the formula or completes the square ignore $10^{x}=-4$ for this mark or exact equivalent

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	22

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	22

Question	Answer	Marks	Guidance
12 (i)	$8\left(1-\cos ^{2} A\right)+2 \cos A=7$ or better	B1	
	Solves or factorises their 3-term quadratic in $\cos A$	M1	
	$60,104.477 \ldots$ rounded or truncated to 1 dp or more;	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras
(ii)	$\sin (3 B+1)=0.4 \text { soi }$	B1	$\text { may be implied by } \frac{1}{\sin (3 B+1)}=2.5$
	$[3 B+1=] 0.41$ or better	M1	implies B1
	0.577, 1.9[0], 2.67 or 0.57669..., 1.89823... , 2.67108... rounded or truncated to 4 or more sf	A2	with no extras in range; or A1 for any one correct ignoring extras
			If $\mathbf{M 0}$ then $\mathbf{B 2}$ for all 3 correct angles found or $\mathbf{B} 1$ for 1 or 2 correct angles found

