ADDITIONAL MATHEMATICS

0606/23
Paper 2
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	23

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Guidance
1	$x^{2}-2 x-15$ critical values -3 and 5 $x<-3 \quad x>5$	M1 A1 A1	expands and rearranges to form a 3 term quadratic not from wrong working mark final inequality; A0 if spurious attempt to combine e.g. $5<x<-3$
2 (a) (b) (i) (ii) (iii)		B1 B1 B1 B1	It must be clear how the sets are nested Allow $\{m, a, t, h, s\}$ for P
3 (i) (ii) (iii) (iv)	$\begin{aligned} & -2 \\ & -n \\ & \frac{\lg 5}{\log _{5} 10}=\left[(\lg y)^{2}\right] \text { or } \frac{\lg 20-\lg 4}{1 / \lg 5}=\left[(\lg y)^{2}\right] \end{aligned}$ correct completion to $(\lg 5)^{2}$ isw $\left[\log _{r}\right] 6 x^{2}=\left[\log _{r}\right] 600$ $x=10 \text { only }$	B1 B1 M1 A1 B1 B1	One log law used correctly answer only does not score Condone base missing

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	23

Question	Answer	Marks	Guidance
4 (i) (ii)	$\frac{\pi}{3}$ isw [Area triangle $A B C=$] $\frac{1}{2} \times 10^{2} \times \sin \left(\right.$ their $\left.\frac{\pi}{3}\right)$ oe [Area 1 sector $=$] $\frac{1}{2} \times 5^{2} \times$ their $\frac{\pi}{3}$ oe or $\pi \times 5^{2} \times \frac{\text { their } 60^{\circ}}{360}$ Complete correct plan 4.03(1...) or $25 \sqrt{3}-\frac{25 \pi}{2}$ isw	B1 M1 M1 M1 A1	seen or implied by $25 \sqrt{3}$ or $43.3(0 \ldots)$ seen or implied by $\frac{25 \pi}{6}$ or $13.0(8 \ldots)$ or 13.09 e.g. their triangle -3 (their sector) Units not required
5 (a) (b)	$\frac{\sqrt{8}}{(\sqrt{7}-\sqrt{5})} \times \frac{(\sqrt{7}+\sqrt{5})}{(\sqrt{7}+\sqrt{5})}$ and attempt to multiply $\frac{\sqrt{56}+\sqrt{40}}{2}$ oe $\sqrt{14}+\sqrt{10}$ $q^{2}+4 q \sqrt{3}+12$ soi $28=q^{2}+12$ oe $q=4,-4 \quad p=16,-16$	M1 A1 A1 B1 M1 A1	not from wrong working can be implied by 4 and 16 or -4 and -16 all values
6 (i)	$4(x+1)^{2}-9$	$\begin{gathered} \mathbf{B 3 , 2}, \\ \mathbf{1 , 0} \end{gathered}$	one mark for each of p, q, r correct in a correctly formatted expression; allow correct equivalent values; If $\mathbf{B 0}$ then $\mathbf{S C} \mathbf{2}$ for $4(x+1)-9$ or SC1 for correct 3 values seen in incorrect format e.g. $4(x+1 x)-9$ or $4\left(x^{2}+1\right)-9$ or for a correct completed square form of the original expression in a different but correct format. e.g. $2(\sqrt{2} x+\sqrt{2})^{2}-9$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	23

| Question | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | (ii)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	23

Question	Answer	Marks	Guidance
9 (a) (b) (i) (ii)	$a=2 \quad b=4 \quad c=-2$ $-\frac{\pi}{2},-\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{2},-\frac{\pi}{3}, \frac{\pi}{3} \quad \text { сао }$	$\begin{gathered} \text { B3 } \\ \text { B3,2,1, } \\ \mathbf{0} \\ \\ \\ \hline \end{gathered}$	B1 for each correct value sinusoidal curve symmetrical about y-axis clear intent to have amplitude of 2 2 cycles If not fully correct max B2 B1 for any 4 correct
(i) (ii) (b) (i) (ii)	2×4 ! or $\frac{2}{5} \times 5!$ oe 48 ${ }^{5} P_{3}$ or $\frac{5!}{2!}$ or $5 \times 4 \times 3$ oe 60 $4 \times 2[!] \times 3 \mathrm{oe}$ 24 3 ! or 3×3 seen 18	M1 A1 M1 A1 M1 A1 M1 A1	Correct first step implied by a correct product of two elements
11 (i) (ii) (iii)	$\frac{3 x^{2}}{2}-\frac{2 x^{5 / 2}}{5}(+c)$ isw $(9,0)$ oe Substitute $(3,9)$ into both lines Or solves simultaneously ($6 x=27-3 x$ oe) to get $x=3, y=9$	$\mathbf{B} 1+\mathbf{B} 1$ B1 B1	Not just $x=9$ $3 \times 3=9 \text { and } \frac{27-3 \times 3}{2}=9$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	23

Question	Answer	Marks	Guidance
(iv)	[Area $A O B=] \frac{1}{2} \times 9 \times 9 \quad$ oe $\quad\left(\frac{81}{2}\right.$ or 40.5$)$ $\begin{aligned} & \text { their }\left[\frac{3(9)^{2}}{2}-\frac{2(9)^{5 / 2}}{5}\right]-[0] \quad(=24.3) \\ & \text { their } \frac{81}{2} \text { - their } \frac{243}{10} \\ & 16.2 \end{aligned}$	M1 M1 M1 A1	Uses their (ii). May split into 2 triangles (13.5 and 27). May integrate. Must be a complete method. lower limit may be omitted but must be correct if seen must be from genuine attempts at area of triangle and area under curve
12 (i)	$\begin{aligned} & {\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{2(x-1)-(2 x-5)}{(x-1)^{2}}} \\ & -12 \text { isw } \\ & \text { ALT using } y=\frac{-12 x^{2}+14 x-5}{x-1} \\ & -24 x+14 \\ & {\left[\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right] \frac{(x-1)(-24 x+14)-\left(-12 x^{2}+14 x-5\right)}{(x-1)^{2}}} \\ & {\left[\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\right] k(x-1)^{-3}} \\ & k=-6 \text { isw } \end{aligned}$	M1A1 B1 B1 M1 A1FT M1 A1	Allow slips in $\frac{\mathrm{d} u}{\mathrm{~d} x}$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}$ but must be explicit. Allow $(x-1)^{2}=x^{2}-2 x+1$ FT on their derivative of 3 term quadratic No additional terms

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	23

Question	Answer	Marks	Guidance
(iii)	their $\left[\frac{3}{(x-1)^{2}}-12\right]=0$ and find a value for x	M1	$\begin{aligned} & 12 x^{2}-24 x+9=0 \mathrm{oe} \\ & (2 x-3)(2 x-1)=0 \mathrm{oe} \end{aligned}$
	$x=0.5$ and $x=1.5$	A1	
	$y=2 \text { and } y=-22$	A1	if $\mathbf{A 0} \mathbf{A 0}$ then $\mathbf{A 1}$ for a correct (x, y) pair
	$\frac{-6}{(-0.5)^{3}}>0$ therefore min when $x=0.5$ oe	B1	or $\left[\frac{-6}{(-0.5)^{3}}=\right] 48$ therefore \min when $x=0.5 \text { oe }$
	$\frac{-6}{(0.5)^{3}}<0$ therefore max when $x=1.5 \mathrm{oe}$	B1	or $\left[\frac{-6}{(0.5)^{3}}=\right]-48$ therefore max when $x=1.5$ oe M1A1 is possible from other methods

