

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

0606 ADDITIONAL MATHEMATICS

0606/01 Paper 1, maximum raw mark 80

0606/02 Paper 2, maximum raw mark 80

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the November 2003 examination.

	maximum	minimum	mark required for grade:	
	mark available	Α	С	Е
Component 1	80	63	31	21
Component 2	80	67	36	26

Grade A* does not exist at the level of an individual component.

Page 1	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606

Mark Scheme Notes

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)

Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- $\bullet\,$ PA $-1\,$ This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS
Paper 1

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	1

1. $x + 3y = k$ and $y^2 = 2x + 3$ Elimination of x or y $y = y^2 + 6y - (2k+3) = 0$ or $y^2 + 6y - (2k+3) = 0$ or $y^2 - (2k+18)x + (k^2 - 27) = 0$ A1 $y = x^2 - (2k+18)x + ($
Uses $b^2 - 4ac$ $\rightarrow k < -6$ $M1$ $Any use of b^2 - 4ac, even if =0 or >0 co A1 A1 A1 A1 A1 A2 A2 A3 A4 A4 A4 A4 A4 A4 A4 A4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2. $8^{-x} = 2^{-3x}$ $4^{\frac{1}{2}x} = 2^{x}$ B1 B1 Wherever used Needs to use $x^a \div x^b = x^{a-b}$ Co Attempts to link powers of 2 $\rightarrow x - 3 - (-3x) = 5 - (x)$ $\rightarrow x = 1.6$ or $8/5$ etc [4] [1 log $8^{-x} = -3x \log 2$, log $4^{\frac{1}{2}x} = x \log 2$ equate coefficients of log 2] [8 lb
2. $8^{x} = 2^{-3x}$ $4^{\frac{1}{2}x} = 2^{x}$ Attempts to link powers of 2 $\rightarrow x - 3 - (-3x) = 5 - (x)$ $\rightarrow x = 1.6$ or $8/5$ etc [4] $1 - 3 - 3 = 1.6$ or $1 - 3 $
Attempts to link powers of 2 \rightarrow x -3- (-3x) = 5 - (x) \rightarrow x = 1.6 or 8/5 etc A1 [4] [B1B1 M1A1] 3. $x^3 + ax^2 + bx - 3$ Puts x=3 \rightarrow 27+9a+3b-3=0 Puts x=-2 \rightarrow -8+4a-2b-3=15 (9a+3b=-24 and 4a-2b=26) Sim equations \rightarrow a = 1 and b = -11 At Needs to use $x^a \div x^b = x^{a-b}$ oco [4] [B1B1 M1A1] Needs x=3 and =0 for M mark Needs x=-2 and =15 for M mark (A marks for unsimplified) At Co [5]
[log 8 ^{-x} = -3xlog2, log 4 ^{1/2x} = xlog2 equate coefficients of log 2] [B1B1 M1A1] 3. $x^3 + ax^2 + bx - 3$ Puts $x = 3$ $\rightarrow 27 + 9a + 3b - 3 = 0$ Puts $x = -2$ $\rightarrow -8 + 4a - 2b - 3 = 15$ (9a+3b=-24 and 4a-2b=26) [M1A1 Needs $x = -2$ and
[log $8^{-x} = -3x\log 2$, log $4^{\frac{1}{2}x} = x\log 2$ equate coefficients of log 2] [B1B1] 3. $x^3 + ax^2 + bx - 3$ Puts $x = 3$ $\rightarrow 27 + 9a + 3b - 3 = 0$ Puts $x = -2$ $\rightarrow -8 + 4a - 2b - 3 = 15$ (9a+3b=-24 and 4a-2b=26) Sim equations $\rightarrow a = 1$ and $b = -11$ A1 co [5] 4. $(\sqrt{3} - \sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5 - 2\sqrt{2}\sqrt{3}$ B1 Co anywhere
equate coefficients of log 2] M1A1] 3. $x^3 + ax^2 + bx - 3$ Puts $x=3 \rightarrow 27 + 9a + 3b - 3 = 0$ Puts $x=-2 \rightarrow -8 + 4a - 2b - 3 = 15$ (9a+3b=-24 and 4a-2b=26) M1A1 Needs $x=-2$ and =15 for M mark (A marks for unsimplified) Sim equations $\rightarrow a = 1$ and $b = -11$ A1 co [5] 4. $(\sqrt{3} - \sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5 - 2\sqrt{2}\sqrt{3}$ B1 Co anywhere
3. $x^3 + ax^2 + bx - 3$ Puts $x=3 \rightarrow 27 + 9a + 3b - 3 = 0$ Puts $x=-2 \rightarrow -8 + 4a - 2b - 3 = 15$ $(9a + 3b = -24 \text{ and } 4a - 2b = 26)$ M1A1 Needs $x=3$ and =0 for M mark Needs $x=-2$ and =15 for M mark (A marks for unsimplified) Sim equations $\rightarrow a = 1$ and $b = -11$ A1 co [5] 4. $(\sqrt{3} - \sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5 - 2\sqrt{2}\sqrt{3}$ B1 Co anywhere
Puts x=3 \rightarrow 27+9a+3b-3=0 M1A1 Needs x=3 and =0 for M mark Puts x=-2 \rightarrow -8+4a-2b-3=15 M1A1 Needs x=-2 and =15 for M mark (9a+3b=-24 and 4a-2b=26) A1 co Sim equations \rightarrow a = 1 and b = -11 A1 co 4. $(\sqrt{3}-\sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5-2\sqrt{2}\sqrt{3}$ B1 Co anywhere
Puts $x=-2 \rightarrow -8+4a-2b-3=15$ (9a+3b=-24 and 4a-2b=26) M1A1 Needs $x=-2$ and =15 for M mark (A marks for unsimplified) Sim equations \rightarrow a = 1 and b = -11 A1 co [5] 4. $(\sqrt{3}-\sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5-2\sqrt{2}\sqrt{3}$ B1 Co anywhere
(9a+3b=-24 and 4a-2b=26)
Sim equations \rightarrow a = 1 and b = -11
4. $(\sqrt{3}-\sqrt{2})^2 = 5 - 2\sqrt{6}$ or $5-2\sqrt{2}\sqrt{3}$ B1 Co anywhere
$\frac{4\sqrt{2} - 3\sqrt{3}}{5 - 2\sqrt{6}} \times \frac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}}$ M1 × by denominator with sign changed
$5-2\sqrt{6}$ $5+2\sqrt{6}$
Denominator = 1
Numerator = $20\sqrt{2}-15\sqrt{3}+8\sqrt{12}-6\sqrt{18}$
But $\sqrt{12} = 2\sqrt{3}$ and $\sqrt{18} = 3\sqrt{2}$ M1 Correct simplification somewhere wi
either of these
$\rightarrow 2\sqrt{2} + \sqrt{3}$ A1 co
[5]
5
y=0 when 3x + $\frac{1}{4}$ π = π
$\rightarrow x = \frac{1}{4}\pi$ B1 Co. Allow 45°
$\int 6\sin(3x+\pi/4)dx = -6\cos(3x+\pi/4) \div 3$ Knows to integrate. Needs "cos".
Between 0 and $\pi/4$ All correct, including ÷3, ×6 and -ve Uses limits correctly – must use x=0
Coop minus con companies and a
\rightarrow 2 + $\sqrt{2}$ or 3.41
6 Wind 50i- 70j V(still air) = 280i -40j
(i) Resultant velocity = $\mathbf{v}_{air} + \mathbf{w}$ M1 Connecting two vectors (allow –)
→ 330i − 110j A1 Co (Could get these 2 marks in (ii)
DM4
$tan^{-1}(110/330) = 18.4^{\circ}$ DM1 For use of tangent (330/110 ok)
\rightarrow Bearing of Q from P = 108° A1 co
(ii) Resultant speed = $\sqrt{(330^2+110^2)}$ M1 Use of Pythagoras with his
Time = 273 \div resultant speed
For $273 \div \sqrt{(a^2+b^2)}$
Scale drawings are ok. [6]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	1

$7 (0.6 0.2 0.5) \times \begin{pmatrix} 8 & 6 & 6 & 5 \\ 5 & 4 & 3 & 2 \\ 3 & 3 & 2 & 2 \end{pmatrix} \times \begin{pmatrix} 40 \\ 50 \\ 50 \\ 60 \end{pmatrix}$ $= (7.3 5.9 5.2 4.4) \times \begin{pmatrix} 40 \\ 50 \\ 50 \\ 60 \end{pmatrix}$	B2,1,0 M1 A1	Wherever 3 matrices come – as row or column matrices – as 3 by 4 or 4 by 3 – independent of whether they are compatible for multiplication or not. Correct method for multiplying any 2 of the 3 - co for A mark.
or $(0.6 \ 0.2 \ 0.5) \times \begin{pmatrix} 1220 \\ 670 \\ 490 \end{pmatrix}$ $\rightarrow 1111	M1 B1 [6]	Correct method for remaining two. Co – even if from arithmetic.
8 (i) d/dx(lnx) = 1/x	B1	Anywhere, even if not used in "u/v"
$\frac{dy}{dx} = \frac{(2x+3) \times \frac{1}{x} - (\ln x) \times 2}{(2x+3)^2}$ (ii) $\delta y = (dy/dx) \times \delta x = 0.2p$ (iii) $dy/dt = dy/dx \times dx/dt$ $\rightarrow dx/dt = 0.6$	M1A1√ M1A1 M1 A1√ [7]	Uses correct formula. All ok. Could use product formula. A mark unsimplified. Allow if δy mixed with dy/dt. M mark given for algebraic dy/dx × p. Allow if dy/dt mixed with δy √ for 0.12 ÷ his dy/dx. Condone use of δx etc
9 (a) Uses $\sec^2 x = 1 + \tan^2 x \rightarrow \text{quad in sec}$ or $\times c^2$ then uses $s^2 + c^2 = 1 \rightarrow \text{quad in cos}$ $\rightarrow 4 \sec^2 x + 8 \sec x - 5 = 0$ $\rightarrow -5 \cos^2 x + 8 \cos x + 4 = 0$ $\rightarrow \sec x = -2.5 \text{ (or 0.5)}$ or $\cos x = -0.4 \text{ (or 2)}$ $\rightarrow x = 113.6^\circ$ or 246.4° (b) $\tan(2y+1) = 16/5 = 3.2$ Basic angle associated with $3.2 = 1.27$ Next angle $= \pi + 1.27$ and $2\pi + 1.27$ (Value $= 1$) $\Rightarrow 2 \rightarrow 3.28$ (others are 0.134 and 1.705)	B1 M1 A1A1√ B1 M1 M1A1	Co. Sets to 0 and uses correct method for solution of a 3 term quadratic in sec or cos. A1 co. A1√ for 360°−"first ans" only. Anywhere (allow 72.6°) Realising the need to add on π and/or 2π Correct order used ie −1, then ÷2 for any correct value. Allow if all 3 values are given, providing none are over 4. (degrees – max 2/4 B1, M0, M1, A0)

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	1

10 $f(x) = 5-3e^{\sqrt{2}x}$		
(i) Range is <5	B1	Allow ≤ or <
(ii) $5-3e^{\frac{1}{2}x} = 0 \rightarrow e^{\frac{1}{2}x} = \frac{5}{3}$ Logs or calculator $\rightarrow x = 1.02$	M1A1	Normally 2,0 but if working shown, can get M1 if appropriate
(iii) (1.02, 0) and (0, 2)	B1 B1√	Shape in 1 st quadrant. Both shown or implied by statement.
(iv) $e^{\frac{1}{2}x} = (5 - y) \div 3$ $x/2 = \ln[(5-y)/3]$ $f^{1}(x) = 2\ln[(5-x)/3]$	M1 M1 A1	Reasonable attempt e ^{1/2x} as the subject. Using logs. All ok, including x, y interchanged.
	[8]	
11 (i) y=½x and y=3x-15 → C(6,3)	M1 A1	Soln of simultaneous eqns Co (or step method if B done first)
OB=OC+CB	M1	Vectors, step or soln of y=½x+5 and
→ B(8,9)	A1√	y=3x-15 From his C
m of OC = $\frac{1}{2}$, m of AD = -2 eqn of AD is y-6= $-2(x-2)$ or y= $-2x+10$	M1 A1	use of m ₁ m ₂ =-1 (M0 if perp to y=3x) Co – unsimplified.
Soln of y= $\frac{1}{2}$ x and eqn of AD \rightarrow D(4,2)	M1A1	Sol of simultaneous eqns. co.
(ii) Length OC = $\sqrt{45}$, OA = $\sqrt{40}$ Perimeter of OABC = $2(\sqrt{45}+\sqrt{40})$ \rightarrow 26.1	M1 M1 A1	Once. Adding OA,AB,BC,CO Co.
	[11]	
12 EITHER		
(i) $125 = \pi r + 2x + 2(5r/4)$ $\rightarrow x = \frac{1}{2}(125 - \pi r - 5r/2)$	M1 A1	Attempt at 4/5 lengths. Co.
h = 3r/4	M1	Anywhere in the question –
Area of triangle = $\frac{1}{2} \times 2r \times 3r/4 = 3r^2/4$	M1	independent of any other working Use of ½bh with h as function of r
$A = \frac{1}{2}\pi r^{2} + 2rx + \dots$ $= 125r - \frac{1}{2}\pi r^{2} - 7r^{2}/4$	B1 A1	Correct ½πr² + 2rx. Answer given – beware fortuitous ans.
(ii) $dA/dr = 125 - \pi r - 7r/2$	M1A1	Any attempt to differentiate. Co.
Solved = 0 to give	DM1	Setting his differential to 0.
\rightarrow r = 250 / (2 π + 7) or 18.8	A1	Any correct form.
	[10]	

Page 4	Mark Scheme		Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	1

12 OR (i) h / (12-r) = 30 / 12	M1	Use of similar triangles – needs ¾
→ h = 5(12-r) / 2	A1	lengths correct. Correct in any form – needs h as subject
Uses V=πr²h to give	M1	Needs correct formula
$\rightarrow V = \pi(30r^2 - 5r^3/2)$	A1	Beware fortuitous answers (AG)
(ii) $dV/dr = \pi(60r - 15r^2/2)$	M1A1	Any attempt to differentiate. co
= 0 when $r = 8 \rightarrow h = 10$	DM1	Setting his dV/dr to 0 + attempt.
→ $V = 640\pi$ or 2010	A1	Correct to 3 or more sig figures
Volume of cone = $\frac{1}{3}\pi \times 12^2 \times 30$ $\rightarrow 1440\pi$ or 4520	M1	Anywhere
Ratio of 4 : 9 or 1 : 2.25 (3 sf)	A1 [10]	Exactly 4:9 or 2.25 to 3 sig figures
DM1 for quadratic equation		
(1) Formula. Sets the equation to 0 Formula must be correct and correctly used. Condone simple slips in sign.		(2) Factors Sets the equation to 0 Attempts to obtain brackets Solves each bracket to 0.

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS
Paper 2

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	2

1 [4]		Eliminate x or y	M1						
		$\Rightarrow y^2 - 8y + 15 = 0 \qquad x^2 - 10x + 9 = 0$							
		Factorise or formula \Rightarrow (1, 3) and (9, 5)							
		Midpoint is (5, 4)							
2 [4]		$\cos \theta \left(\frac{1 + \sin \theta - (1 - \sin \theta)}{1 - \sin^2 \theta} = \cos \theta \left(\frac{2 \sin \theta}{1 - \sin^2 \theta} \right) = \frac{2 \sin \theta \cos \theta}{1 - \sin^2 \theta}$	M1 A1						
		Use of Pythagoras $\Rightarrow \frac{2\sin\theta\cos\theta}{\cos^2\theta} = 2\tan\theta \Rightarrow k = 2$	B1 A1						
3 [4]		$\log_2 x = 2\log_4 x$ or $\log_4 (x - 4) = \frac{1}{2} \log_2 (x - 4)$	B1						
		$2\log_4 x - \log_4 (x - 4) = 2$ or $\log_2 x - \frac{1}{2} \log_2 (x - 4) = 2$							
		Eliminate logs $\frac{x^2}{x-4} = 16$ or $\frac{x}{\sqrt{x-4}} = 4$	M1 A1						
		Solve for $x \Rightarrow x = 8$	A1						
4 [4]	(i)	C C	B2 B1 B1						
	(ii)	A ∩ B'∩C'							
	(iii)	$B \cup (A \cap C)$							
5 [5]	(i)	$243x^5 -405x^4 +270x^3$							
	(ii)	Coefficient of $x^4 = (-405 \times 1) + (270 \times 2) = 135$	M1 A1						
6 [6]		At B, $v = 40 (e^{-t} - 0.1) = 0 \implies e^{-t} = 0.1 \implies t = \ln 10 (=2.30)$	M1 A1						
		$\int 40 (e^{-t} - 0.1) dt = 40 (-e^{-t} - 0.1t)$	M1 A1						
		$AB = \int_{0}^{\log 10} = 40 \left[\left(-\frac{1}{10} - \frac{\ln 10}{10} \right) - \left(-1 \right) \right] = 4(9 - \ln 10) \approx 26.8$	DM1 A1						

Page 2	Mark Scheme	Syllabus	Paper	
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	2	

7 [7]		Dealing with elements $\begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$ and $\begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$								
		$\mathbf{A}^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} \mathbf{B}^{-1} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$								
	(i)	$\mathbf{C} = \mathbf{B} - 2\mathbf{A}^{-1} = \begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -5 & 7 \end{pmatrix}$								
	(ii)	$\mathbf{D} = \mathbf{B}^{-1}\mathbf{A} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 9 & 5 \\ 14 & 6 \end{pmatrix}$								
8 [7]	(i)	$\frac{10!}{6!4!} = \frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4} = 210$								
	(ii)	No pink selected i.e. any 6 from (5 + 2) = 7	В1							
	(iii)	All selections contain at least 1 red								
		No yellow selected i.e. any 6 from $(3 + 5) = \frac{8!}{6!2!} = 28$								
		At least 1 of each colour – 120 – (7 + 28) = 175								
9 [8]	(i)	$\frac{d}{dx}\left(\sqrt{4x-3}\right) = \left(4x-3\right)^{-\frac{1}{2}} \times \frac{1}{2} \times 4$								
		$\frac{d}{dx} \left\{ (2x+3)\sqrt{4x-3} \right\} = (2x+3)\left(\frac{2}{\sqrt{4x-3}}\right) + 2\sqrt{4x-3}$								
		$=\frac{12x}{\sqrt{4x-3}} \Rightarrow k = 12$	A1							
	(ii)	$\int \frac{x}{\sqrt{4x-3}} \mathrm{d}x = (2x+3)\sqrt{4x-3} \times \frac{1}{12}$	M1	A1						
		$\int_{1}^{7} = \frac{1}{2} (85 - 5) = 6 \frac{2}{3}$	A1							
10 [10]		(i) $\angle AOB = 19.2 + 16 = 1.2$	M1	A1						
	-	(ii) $DE = 8 \sin 1.2 \approx 7.46$ (iii) $\angle DOE = \sin^{-1} (7.46 \div 16) \approx 0.485 \text{ (AG)}$	M1 M1							
	10	(iii) $\angle DOE = \sin^{-1}(7.46 \div 16) \approx 0.485 \text{ (AG)}$ (iv) Sector $DOB = \frac{1}{2} \times 16^2 \times 0.485 = 62.08$	M1	Λ1						
	1	Length $OE = \sqrt{(16^2 - 7.46^2)} \approx 14.2$	M1							
	1	$\Delta DOE = \frac{1}{2} \times 7.46 \times 14.2 \approx 52.97$	M1							
		Shaded area ≈ 9.1 – 9.3 (9.275)	A1							

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	2

11 [10]		V	5	10	15	20	25	(i) Plotting lg R against lg v	M1	
		R	32	96	180	290	420	Accuracy of points: Straight line	A2,	1, 0
		lg v	0.70	1.00	1.18	1.30	1.40	(ii) $R = kv^{\beta} \Rightarrow \lg R = \lg k + \beta \lg v$	B1	
		lg R	1.51	1.98	2.26	2.46	2.61	β = gradient \approx 1.55 - 1.60	M1	A1
						lg <i>k</i> =	= lg <i>R</i> ii	ntercept $\approx 0.4 \Rightarrow k \approx 2.4 - 2.6$	M1	A1
	(iii)	lg R	= Ig 75	i ≈ 1.88	$3 \Rightarrow \text{fro}$	m graph	n lg <i>v</i> ≈	$0.92 - 0.96 \Rightarrow v \approx 8.3 - 9.1$	M1	A1
		[Or b	y solvi	ng e.g	., 75	$= 2.5v^{1}$	^{.58} or	1.88 = 0.4 + 1.58 lg <i>v</i>]		
12 EITHER [11]	(i)	gf(x)	= 2-((3x-2)					B1	
		Solve	$= \frac{4}{4-3}$	$\frac{1}{x} = 2$		[or so	lve fg($x)=3\left(\frac{4}{2-x}\right)-2=2]$	M1	
		$\Rightarrow x$	= 2/3						A1	
	(ii)	$f(x) = g(x) \Rightarrow 3x - 2 = \frac{4}{2 - x} \Rightarrow 3x^2 - 8x + 8 = 0$								
		Disci	riminar	nt = 64	- 96 <	0	\Rightarrow	No real roots	M1	A1
	(iii)	f ⁻¹ : >	$\alpha \mapsto (x)$	(+ 2) ÷	3				B1	
		y = 4	/ (2 –	<i>x</i>)	⇒ 2	x = 2 - 4	4/ <i>y</i>	$\Rightarrow g^{-1}: x \mapsto 2-4/x$	M1	A1
	(iv)	7	٢	1	f.				B1	B1
			1	1				Lines intersect at (1, 1)	В1	

Page 4	Mark Scheme	Syllabus	Paper	
	IGCSE EXAMINATIONS – NOVEMBER 2003	0606	2	

12 OR [11]	(i)	$1 - x^2 + 6x = a - (x + b)^2 = a - x^2 - 2bx - b^2 \Rightarrow a - b^2 = 1 \text{ and } -2b = 6$	M1	A1
		[or $1 - x^2 + 6x \equiv 1 - (x^2 - 6x) \equiv 1 - \{(x - 3)^2 - 9\}$]		
		$\Rightarrow b = -3, a = 10$	A1	
	(ii)	$1 - x^2 + 6x = 10 - (x - 3)^2$ \Rightarrow Maximum at (3, 10)		
		∴ Single-valued for $x \ge 3$ and hence for $x \ge 4$	M1	A1
	(iii)	$y = 10 - (x - 3)^2$ \Rightarrow $(x - 3)^2 = 10 - y$ \Rightarrow $x - 3 = \sqrt{(10 - x)}$	M1	
		$\Rightarrow f^{-1}: x \mapsto 3 + \sqrt{(10 - x)}$	A1	
	(iv)	When $x = 2$, $g(x) = 9$ and when $x = 7$, $g(x) = -6$	B1	
		Range of g is $-6 \le g \le 10$	B1	
	(v)		В 2,	1, 0