MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Pag	je 4	Mark Scheme			Syllabus	Paper
			IGCSE – October/Novemb	per 2012		0606	12
1	(i)	$\left(\frac{24}{7}\right) = 2$	5	M1 A1 [2]		or a complete meth he modulus	nod to find the sum
		$4\lambda - \mu = 2$ $3\lambda + 2\mu = 2$ $\lambda = 4 \text{ and}$	= 2	M1 DM1 A1 [3]		or equating like ve for solving simult	
2	(i)	$\frac{1}{2} \begin{pmatrix} 1.5 & 1\\ 1 & 2 \end{pmatrix}$)	B1 B1 [2]		or reciprocal of det or matrix	erminant
	(ii) <i>4</i>			M1	must their	or correct use of in be using pre-multi inverse, must see a ply out.	plication with
		$=\frac{1}{2}\begin{pmatrix}1\\0\end{pmatrix}$	$ \begin{array}{c} 13\\14 \end{array} \right) \text{or} \begin{pmatrix} 0.5 & 6.5\\0 & 7 \end{pmatrix} $	A2,1,0 [3]	-1 ea	ch error	

Γ	Page 5	Mark Scheme	Syllabus	Paper
		IGCSE – October/November 2012	0606	12

3 (i)		200 A
$=\cos\left(1+\frac{\sin\left(1+\frac{1+\cos\left(1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\cos\left(1+\cos\left(1+\frac{1+\cos\left(1+\frac{1+\cos\left(1+\cos\left(1+\cos\left(1+\frac{1+\cos\left(1+\cos\left(1+\cos\left(1+\frac{1+\cos\left(1+\cos\left(1+\cos\left(1+\frac{1+\cos\left(1+\cos\left(1+\cos\left(1+\cos\left(1+\cos\left(1+\cos\left(1+\cos\left(1+\cos\left($	B1	B1 for $\cot \theta = \frac{\cos \theta}{\sin \theta}$
$\cos(+ \cos^2(+ \frac{[\sin]^{\uparrow 2}()}{\sin((1 + \cos))})$	M1	M1 for attempt to add fractions
= (("cos" "(" + 1"))/("sin" "(" ("cos"(" -	M1	M1 for use of identity
$=\frac{1}{\sin(1)}=\cos(1)$	M1 A1	M1 for algebra/simplification Must see cosec θ for A1
Alternative scheme:	[5]	
$=\frac{1}{\tan(1+\cos(1))}$		
= (("1" " + " "cos" ["(") + " "tan" "(" " " "sin" "(
$= ("1"" + ""cos""(" + ""("sin"))^{+}2""(")/"cos")$	M1	M1 for attempting to add fractions
= ("cos" "(" " + " ["cos"] [†] "2" "(" + " [["sin"]]		
= (("cos" "(" + 1"))/("sin" "(" ("cos" "(" " + 1"	B1	B1 for $\tan \theta = \frac{\sin \theta}{\cos \theta}$
$=\frac{1}{\sin t}=\cos \theta$		
	M1	M1 for use of identity
	M1 A1	M1 for algebra/simplification Must see cosec θ for A1
(ii) Gives cosec $\theta = 0.5$, leads to sin $\theta = 2$ which has no solutions.	B1 [1]	Needs an explanation

	Pa	ge 6	Mark Scheme			Syllabus	Paper	
			IGCSE – October/Novemb	oer 2012		0606	12	
4	(i)		$\log_a q = 9$ $\log_a q = 15$ fo and $\log_a q = 3$	B1 B1 M1 A1 [4]		for solution of the two equations for both		
Or		0						
		$a^9 = pq$ $a^{15} = p^2 q$ $a^6 = p$ wh	ich leads to $\log_a p = 6$	B1 B1 M1	M1 f equa	or complete solutio	n of the two	
		$a^3 = q$ wh	ich leads to $\log_a q = 3$	A1	A1 f	or obtaining both in	correct log form	
Or			$-\log_a pq = 6$ $= 6, \log_a p = 6$	M1 B1		For $\log_a p^2 q - \log_a p$ or $\log_a \frac{p^2 q}{pq} = 6$	bq = 6	
		$\log_a pq =$ so $\log_a q$	$\log_a p + \log_a q = 9$ = 3	B1 A1		or $\log_a pq = \log_a p$ or both	$+\log_a q = 9$	
	(ii)	$\log_p a + 1$	$\log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}, = 0.5$	M1, A1 [2]	M1 f	for change of both t	o base <i>a</i> logarithm	
5	Usiı	ng x = 6 + 2	$2y \text{ or } y = \frac{x-6}{2}$	M1		for attempt to obtair variable.	n an equation in	
	$y^{2} +$	4y - 12 =	0 or $x^2 - 4x - 60 = 0$	M1		For reducing to a thr ted to zero	ee term quadratic	
	(<i>y</i> +	= 6)(y – 2) =	= 0 or $(x+6)(x-10) = 0$	DM1		for correct attemp points of intersecti		
	lead and	ling to $y = x$	-6, y = 2 -6, x = 10	A1 A1	A1 f	or each correct pair		
		$=\sqrt{16^2} + \sqrt{320}$	8 ² 8√5 or 17.9	M1 A1 [7]		for correct attempt t Allow in any of thes		

Р	Page 7 Mark Scheme		Syllabus	Paper	
		IGCSE – October/Noven	nber 2012 0606		12
6			B1	If sin 15° is not used, th available B1 for correct statement	
		or equivalent	M1	M1 for correct manipula $\sin u = $ an expression in	
$\theta = \frac{2\sqrt{3}}{3\sqrt{2}}$	<u>/2</u> + 4		M1	M1 for attempt to obtain reasonable attempt at sir their numerator	
			M1	M1 for attempt to rationattempt at simplification	
			A1 [5]		
sir	$\mathbf{n}(=6-4\sqrt{2}$				
7 (i)		C: $y - 4 = m(x - 8)$ r $y - 8 = m(x - 6)$	M1	M1 for attempt to obtain BC , BE , EC , (gives $y = 2$	
	AD, AE: y -	$-4 = -\frac{1}{m}$ (x + 5)	M1	M1 for attempt to obtain <i>AD</i> , <i>AE</i> , (gives $2y = x + $	
	For D, $y = 3$	3 and x = 3	B1, A1	B1 for $y = 8$, allow anyw A1 for $x = 3$	here
		4x = x + 13 or equivalent = 5.4, $y = 9.2$	M1	M1 for attempt at the po of <i>BE</i> with AD, not depe	
			A1 [6]	A1 for both	
(ii) Area = $\frac{1}{2}$ ($(13+3) \times 4$			
	or $=\frac{1}{2}\begin{vmatrix} 3 & 6 \\ 6 & 8 \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	M1 for a correct attempt allow odd arithmetic slip	
	= 32		A1 [2]		

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	12

8	(i)	Area = $\frac{1}{2}$ 18 ² sin 1.5 - $\frac{1}{2}$ 10 ² (1.5)	M1	M1 for attempt at area of a sector with $r = 10$
		= 161.594 - 75	M1	M1 for attempt at area of triangle with correct lengths used
		= 86.6	A1 [3]	
		(or area of triangle = $\frac{1}{2} \times 24.539 \times 13.170$)		
	(ii)	$AC = 15 \text{ or } 10 \times 1.5$ $LBD = 36 \sin 0.75$ $BD = \sqrt{18^2 + 18^2 - (2 \times 18 \times 18 \cos 1.5)}$ = 24.5	B1 M1	B1 for AC M1 for correct attempt at BD – can be given if seen in (i)
		Perimeter = $15 + 24.5 + 16$ = 55.5	M1 A1 [4]	M1 for attempt to obtain perimeter
9	(a)	(i)	B1 B1 B1 B1 [4]	B1 for either correct amplitude or period for $y = \sin 2x$ B1 for $y = \sin 2x$ all correct B1 for translation of +1 parallel to y-axis or correct period for $y = 1 + \cos 2x$ B1 for $y = 1 + \cos 2x$ all correct
		(ii) $x = \frac{\pi}{4}, \frac{\pi}{2}$	B1, B1 [2]	Allow in degrees
	(b)	(i) Amplitude = 5, Period = $\frac{\pi}{2}$ or 90°	B1,B1 [2]	B1 for each
		(ii) Period = $\frac{\pi}{3}$ or 60°	B1 [1]	

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	12

10	(i)	$f\left(\frac{1}{2}\right):\frac{3}{2} + \frac{a}{2} + b = 0$	M1	M1 for use of $x = \frac{1}{2}$ and equating to zero
		$f'(x) = 12x^2 + 8x + a$	M1	M1 for differentiation
		$f'\left(\frac{1}{2}\right): 3+4+a=0$	M1	M1 for attempt to obtain $a = -7$ from $f'\left(\frac{1}{2}\right)$
		Leading to $a = -7$ and $b = 2$	A1 A1 [5]	
	(ii)	f (-3) = -49	M1 A1 [2]	M1 for use of $x = -3$ in either the remainder theorem or algebraic long division.
	(iii)	$f(x) = (2x - 1)(2x^2 + 3x - 2)$	M1, A1 [2]	M1 for attempt to obtain quadratic factor
	(iv)	f (x) = $(2x - 1)(2x - 1)(x + 2)$ Leading to $x = 0.5, -2$	B1 B1 [2]	B1 for each – must be correct from work

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	12

	•	
11 EITHER		
(i) $= \frac{10x}{(1 + x^{2})^{2}}$ or $\frac{dy}{dx} 5x^{2}(-2x(1 + x^{2})^{-2}) + (1 + x^{2})^{-1} 10x$	M1 A2,1,0 A1 [4]	M1 for attempt to differentiate a quotient -1 each error
(ii) Stationary point at (0, 0) $\frac{d^2 y}{dx^2} = \frac{(1+x^2)^2 10 - 10x(4x)(1+x^2)}{(1+x^2)^4}$	B1 M1	M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough. dy
When $x = 0$, $\frac{d^2 y}{dx^2}$ is +ve, minimum (iii)	A1 [3]	Must have attempted to solve $d_{\mathbf{N}} = 0$ If using second derivative, must be either a product or quotient for M1 together with some sort of conclusion.
$\int \frac{x}{(1+x^2)^2} dx = \frac{1}{2} \frac{x^2}{(1+2^x)} (+c)$ $\int_{-1}^2 \frac{x}{(1+x^2)^2} dx = \frac{1}{2} \left[\frac{4}{5} - \frac{1}{2} \right]$ $= 0.15$	B1 B1 M1 A1 [4]	B1 for $\frac{xx^2}{(1+x^2)}$, B1 for $\frac{1}{2}\frac{x^2}{(1+x^2)}$ M1 for correct use of limits in an attempt at integration

ſ	Page 11	Mark Scheme	Syllabus	Paper
Ī		IGCSE – October/November 2012	0606	12

11	OR		
11	UK .		
	(i)		
	$\frac{dy}{dx} = \frac{(x^2 - 2)2Ax - (Ax^2 + B)2x}{(x^2 - 2)^2}$	M1 A2,1,0	M1 for attempt to differentiate a quotient –1 each error
	$=\frac{2x(Ax^2-2A-Ax^2-B)}{(x^2-2)^2}$		
	$=\frac{2x(2A+B)}{(x^2-2)^2}$	A1 [4]	Answer given
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 - 2)^{-1} 2Ax + (-2x)(x^2 - 2)^{-2} (Ax^2 + B)$		
	(ii) $5 = 2A + B$	M1	M1 for use of conditions once
	3 = A + B	M1	M1 for use of conditions a second time
	Leading to $A = 2, B = 1$	A1	and attempt to solve resulting equations
		[3]	
	1		
	(iii) when $\frac{dy}{dx} = 0, x = 0$	B1	B1 for correct <i>x</i>
	$y = -\frac{1}{2}$	∛ B1	\checkmark B1 for $y = -\frac{B}{2}$
	$\frac{d^2 y}{dx^2} = \frac{(x^2 - 2)^2 (-10) - (-10x) 4x(x^2 - 2)}{(x^2 - 2)^4}$	M1	M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough.
			Must have attempted to solve $\frac{dy}{dx} = 0$
			dx If using second derivative, must be either a product or a quotient for M1 together with some sort of conclusion.
	When $x = 0$, $\frac{d^2 y}{dx^2}$ is -ve \therefore max	A1 [4]	A1 for a correct conclusion from completely correct work.