MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	12

T

Abbreviations

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

1	$kx^{2} + (2k - 8)x + k = 0$ $b^{2} - 4ac > 0 \text{ so } (2k - 8)^{2} - 4k^{2} (>0)$ $4k^{2} - 32k + 64 - 4k^{2} (>0)$	M1 DM1 DM1	for attempt to obtain a 3 term quadratic in the form $ax^2 + bx + c = 0$, where b contains a term in k and a constant for use of $b^2 - 4ac$ for attempt to simplify and solve for k
	leading to $k < 2$ only	A1	A1 must have correct sign
2	$\left(\frac{dy}{dx}\right) = -5x(+c)$ When $x = -1$, $\frac{dy}{dx} = 2$ leading to	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	$\frac{\mathrm{d}x}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} = \dots$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	
	Alternative scheme:		
	$y = ax^{2} + bx + c \text{ so } \frac{dy}{dx} = 2ax + b$ When $x = -1$, $\frac{dy}{dx} = 2$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in <i>a</i> and <i>b</i>
	$\int_{a}^{b} dx$	A1	for a correct equation
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a$	DM1	for a second differentiation to obtain <i>a</i>
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for <i>a</i> , <i>b</i> and <i>c</i> all correct

Page 3

Mark Scheme Cambridge IGCSE – October/November 2015

SyllabusPaper060612

3	$\sqrt{(\sec^2 \theta - 1)} + \sqrt{(\csc^2 \theta - 1)} = \sec \theta \csc \theta$		
	$LHS = \tan\theta + \cot\theta$	B1	may be implied by the next line
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$	B1	for dealing with $\tan \theta$ and $\cot \theta$ in terms of
			$\sin \theta$ and $\cos \theta$
	$=\frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{1}{\sin\theta\cos\theta}$	M1	for the use of $\sin^2 \theta + \cos^2 \theta = 1$ in correct
	$\sin\theta\cos\theta$		context
	$= \sec\theta\csc\theta$	A1	Must be convinced as AG
	Alternate scheme:		
	$LHS = \tan\theta + \cot\theta$		
	$= \tan \theta + \frac{1}{\tan \theta}$	B1	may be implied by subsequent work
	$=\frac{\tan^2\theta+1}{\tan\theta}$	M1	for attempt to obtain as a single fraction
		1011	for attempt to obtain as a single fraction
	$=\frac{\sec^2\theta}{\tan\theta}$	B1	for use of the correct identity
	$=\frac{\sec\theta}{\tan\theta}\times\sec\theta$	M1	for 'splitting' sec ² θ
	$\tan \theta = \csc \theta \sec \theta$		
	- cosee see s	A1	Must be convinced as AG
4 (a) (i)	28	B1	
(ii)	20160	B1	
(iii)	$6 \times (5 \times 4 \times 3)$ oe to give 360 $6 \times (5 \times 4 \times 3) \times 2$	B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books
	= 720	B1	for the realisation that the above arrangement can be either side of the clock.
(b)	Either ${}^{10}C_6 - {}^7C_6 = 210 - 7$	B1, B1	B1 for ${}^{10}C_6$, B1 for 7C_6
	= 203	B1	
	Or $1W 5M = 63$	B1	for 1 case correct, must be considering more
	2W 4M = 105		than 1 different case, allow C notation
	3W 3M = 35 Total = 203	B1 B1	for the other 2 cases, allow <i>C</i> notation for final result
	10001 200	51	

	Page 4			Syllabus Paper
<u>.</u>		Cambridge IGCSE – October/No		2015 0606 12
5	(i)	$\frac{dy}{dx} = (x-3)\frac{4x}{2x^2+1} + \ln(2x^2+1)$	B1	for correct differentiation of ln function
			M1	for attempt to differentiate a product
		when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oe	A1	for correct product, terms must be bracketed where appropriate
		or 1.31 or better	A1	for correct final answer
(ii)	$\partial y \approx$ (answer to (i)) × 0.03	M1	for attempt to use small changes
		= 0.0393, allow awrt 0.039	A1FT	follow through on <i>their</i> numerical answer to (i) allow to 2 sf or better
6	(i)	$A \cap B = \{3\}$	B1	
(ii)	$A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$	B1	
(i	ii)	$A' \cap C = \{1, 5, 7, 11\}$	B1	
(i	v)	$(D \cup B)' = \{1, 9\}$	B1	
((v)	Any set containing up to 5 positive even numbers ≤ 12	B1	
7	(i)	Gradient = $\frac{0.2}{0.8} = 0.25$	M1	for attempt to find the gradient
		b.8 b = 0.25	A1	
		Either $6 = 0.25(2.2) + c$ Or $5.8 = 0.25(1.4) + c$	M1	for a correct substitution of values from either point and attempt to obtain <i>c</i> or
		leading to $A = 233$ or $e^{5.45}$	A1	solution by simultaneous equations dealing with $c = \ln A$
		Alternative schemes:		
		Either Or $(22)^{b}$		
		$6 = b(2.2) + c \qquad e^{6} = A(e^{2.2})^{b}$ $5.8 = b(1.4) + c \qquad e^{5.8} = A(e^{1.4})^{b}$	M1	for 2 simultaneous equations as shown
			DM1	for attempt to solve to get at least one
		Leading to $A = 233$ or $e^{5.45}$ and $b = 0.25$	A1, A1	solution for one unknown A1 for each
(ii)	Either $y = 233 \times 5^{0.25}$	M1	for correct use of either equation in attempt
		Or $\ln y = 0.25 \ln 5 + \ln 233$		to obtain y using <i>their</i> value of A and of \vec{b} found in (i)
		leading to $y = 348$	A1	

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2015060612

	1		1
8	$\frac{dy}{dx} = \frac{2(x^2+5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}(2x-1)}{x^2+5}$ or $\frac{dy}{dx} = 2(x^2+5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}(2x-1)$	B1 M1 A1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified
	When $x = 2$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$ (allow 0.444 or 0.44)	B1, B1	B1 for each
	Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$ (9y = 4x + 1)	M1 A1	for attempt at straight line, must be tangent using <i>their</i> gradient and y allow unsimplified.
9 (i)	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$ only
(ii)	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$	M1	Condone omission of c for attempt to find the area of the trapezium
	= 12.5 Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5} - \left(\frac{1}{2} \times 5 \times 5\right)$	A1 M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only
	$= \left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$	A1	(must be using 5 and 0) for $18 - \frac{16}{3}$ or equivalent
	$=\frac{1}{6}$ or awrt 0.17	A1	
	Alternative scheme: Equation of <i>AB</i> $y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of AB
	Area = $\int_{0}^{\delta} \sqrt{4 + x} - \left(\frac{1}{5}x + 2\right) dx$ = $\left[\frac{2}{3}(4 + x)^{\frac{3}{2}} - \frac{x^{2}}{10} - 2x\right]_{0}^{\delta}$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$= \left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$ $= \frac{1}{6} \text{ or awrt } 0.17$	A1 A1 A1	for $18 - \frac{16}{3}$ or equivalent for 12.5 or equivalent

Pa	Page 6 Mark Scheme				Syllabus	Paper
		Cambridge IGCSE – October/November 2015 0606 12				
10 (i)		All sides are equal to the radii of the circles which are also equal	B1	for a convincing	g argument	
(ii)		Angle $CBE = \frac{2\pi}{3}$	B1	must be in terms of π , allow 0.667 π , or better		
(iii)		$DE = 10\sqrt{3}$	M1	for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>		
			A1	for correct DE ,	allow 17.3 of	r better
		Arc $CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to find CBE (20.94)	nd arc length	with <i>their</i> angle
		Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	for $10 + 10 + D$	E + an arc le	ngth
		= 58.3 or 58.2	A1	allow unsimpli	fied	
(iv)		Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1	for sector area unsimplified, m	-	-
		Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area must be the sam unsimplified, m	ne as <i>their</i> an	
		Area $=\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148	A1	allow in either t	form	

Page	7 Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – October/N	ovember	2015 0606 12
11 (a) (i)	$(x+3)^2-5$	B1, B1	B1 for 3, B1 for – 5
(ii)	$y \ge 4 \text{ or } f \ge 4$	B1	Correct notation or statement must be used
(iii)	$y = \sqrt{x+5} - 3$	M1	for a correct attempt to find the inverse function
	Domain $x \ge 4$	A1 B1FT	must be in the correct form and positive root only Follow through on <i>their</i> answer to (ii), must be using x
(b)	$h^2g(x) = h^2(e^x)$	M1	for correct order
	$=h(5e^x+2)$	M1	for dealing with h^2
	$=25e^{x}+12$		
	$25e^x + 12 = 37,$	DM1	for solution of equation (dependent on both previous M marks)
	leading to $x = 0$	A1	
	Alternative scheme 1:		
	$hg(x) = h^{-1}(37)$	M1	for correct order
	$h^{-1}(37) = 7$	M1	for dealing with $h^{-1}(37)$
	$5e^x + 2 = 7,$	DM1	for solution of equation (dependent on both
	leading to $x = 0$	A1	previous M marks)
	Alternative scheme 2:		
	$g(x) = h^{-2}(37)$	M1	for correct order
	$h^{-2}(37) = 1$	M1	for dealing with $h^{-2}(37)$
	$e^x = 1,$	DM1	for solution of equation (dependent on both
	leading to $x = 0$	A1	previous M marks)

	Page 8 Mark Scheme			Syllabus Paper		
	Cambridge IGCSE – October/November 2015			2015 0606 12		
12		2. (1(0 2. 10 75 0	M 1	Construction of the international structure in		
12		$x^{2} + 6x - 16 = 0$ or $y^{2} + 10y - 75 = 0$ leading to	M1	for attempt to obtain a 3 term quadratic in terms of one variable only		
		(x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	DM1	for attempt to solve quadratic equation		
		so $x = 2, y = 5$ and $x = -8, y = -15$	A1, A1	A1 for each 'pair' of values.		
		Midpoint $(-3, -5)$	B1			
		Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$				
		Perpendicular bisector:				
		$y + 5 = -\frac{1}{2}(x + 3)$	M1	for attempt at straight line equation, must be		
		(2y + x + 13 = 0)		using midpoint and perpendicular gradient		
		Point <i>C</i> (-13, 0)	M1	for use of $y = 0$ in <i>their</i> line equation (but not $2x - y + 1 = 0$)		
		Area $=\frac{1}{2}\begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$	M1	for correct attempt to find area, may be using <i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i> (<i>C</i> must lie on the		
		=125	A1	<i>x</i> -axis)		
		Alternative method for area:				
		$CM^2 = 125, \ AB^2 = 500$	M1	for correct attempt to find area may be using		
		Area $=\frac{1}{2} \times \sqrt{125} \times \sqrt{500}$		<i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i>		
		= 125	A1			