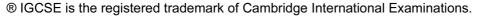
CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS


0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	e 2 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	22

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

_		T		<u> </u>
1	(i)	f(-2) = -32 - 16 + 30 + 18 = 0	B1	All four evaluated terms must be seen. Allow if correct long division used
	(ii)	$f(x) = (x+2)(4x^2 - 12x + 9)$	M1	Coefficients 4 and 9
	(11)	$\frac{1(x)-(x+2)(1x-12x+3)}{2x+3}$	A1	Coefficient –12
		= (x+2)(2x-3)(2x-3)	A1	All three factors together
		$f(x) = 0 \to x = -2, 1.5 \text{ nfww}$	A1	Allow 1.5 mentioned just once
2	(i)	$(2-3x)^6 = 64 - 576x + 2160x^2$ isw	B1B1B1	
	(ii)	$2160 - 2 \times 576 = 1008$	M1 A1	their final $2160 + 2 \times their$ final -576
		, ,		
3	(i)	$\overrightarrow{AB} = \begin{pmatrix} -15\\8 \end{pmatrix}$	B1	Allow \overrightarrow{BA} May be implied by later work.
		$ AB = \sqrt{15^2 + 8^2} (=17)$	M1	Use of Pythagoras on their AB
		Speed = $17 \times 3 = 51 \text{km/hr}$	A1	Must be exact
	(ii)	$\overrightarrow{BC} = \begin{pmatrix} 16 \\ -30 \end{pmatrix}$	B1	Allow \overline{CB}
		$ BC = \sqrt{16^2 + 30^2}$ (= 34)	M1	Use of Pythagoras on their BC
		Time taken = $\frac{34}{51} \times 60 = 40 \text{ mins (or } \frac{2}{3} \text{ hrs)}$	A1	Allow answers which round to 40 to 2sf. Accept 0.66 or 0.67 hrs. Mark final answer.

Page 3	ge 3 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	22

4	(a)	$2\mathbf{B}\mathbf{A} = 2 \begin{pmatrix} 1 & -2 & 4 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 5 \\ 7 & 4 \end{pmatrix}$ $= 2 \begin{pmatrix} 24 & 5 \\ 5 & 17 \end{pmatrix} = \begin{pmatrix} 48 & 10 \\ 10 & 34 \end{pmatrix}$	B3,2,1,0	-1 each error in 2 × 2 result. Failure to multiply by 2 is one error
	(b) (i)	$\mathbf{C}^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \text{ isw}$	B1 B1	$\frac{1}{8}$ Matrix
	(ii)	$\mathbf{I} - \mathbf{D} = \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	В1	
		$\mathbf{X} = \mathbf{C}^{-1} \left(\mathbf{I} - \mathbf{D} \right) = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	M1	Pre multiply <i>their</i> $\mathbf{I} - \mathbf{D}$ with <i>their</i> \mathbf{C}^{-1}
		$=\frac{1}{8}\begin{pmatrix} -10 & 18\\ -3 & -1 \end{pmatrix}$ isw	A1	
5	(a)	$2^{3(q-1)} \times 2^{2p+1} = 2^{14}$	B1	Correct powers of 2 allow unsimplified isw
		$3^{2(p-4)} \times 3^q = 3^4$	B1	Correct powers of 3 allow unsimplified
		Solve $3q + 2p = 16$ q + 2p = 12	M1	Attempt to solve <i>their</i> linear equations by eliminating one variable
		p=5, $q=2$	A1	Both correct
	(b)	(3x-2)(x+1)	M1	LHS oe isw
		= 50	A 1	50 from correct processing of 2 – lg 2
		$3x^2 + x - 52 = 0 \rightarrow (3x + 13)(x - 4)$	M1	Solution of <i>their</i> three term quadratic Roots must be obtained from correct
		x = 4	A1	quadratic
		$x = -\frac{13}{3}$ discarded	A1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	22

6 (i)	a = 3, b = 2, c = 4	B1B1B1	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 4x \text{ isw}$	M1 A1FT	$\pm k \cos cx$ and no other term in $x = c \neq 1$ $bc \times \cos cx$ and no other term
(iii)	$x = \frac{\pi}{2} \to \frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 2\pi = 8$	DM1	Find <i>their</i> correct numerical $\frac{dy}{dx}$
	Eqn: $\frac{y-3}{x-\frac{\pi}{2}} = -\frac{1}{8}$ $\left(\to y = -\frac{1}{8}x + 3.20 \right)$	M1	Find equation with <i>their</i> numerical normal gradient ie $\frac{-1}{\frac{dy}{dx}}$ and point
		A1	$\left(\frac{\pi}{2}, 3\right)$ All correct isw
7 (i)	$\frac{h}{8} = \frac{6-r}{6} \to h = \frac{4}{3}(6-r)$	M1 A1	Uses correct ratio. Cannot be implied
(ii)	$V = \pi r^{2} h = \pi r^{2} \times \frac{4}{3} (6 - r)$ $= 8\pi r^{2} - \frac{4}{3} \pi r^{3}$	В1	AG all steps must be seen Penalise missing brackets at any point in working
(iii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 16\pi r - 4\pi r^2$	M1 A1	Differentiate at least one power reduced by one
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 0 \to r = 4$	M1 A1	Attempt to solve – must get $r =$ Correct value of r . Ignore $r = 0$
	$V = \frac{128}{3}\pi \qquad \left(=42.7\pi\right)$	A1	Correct value of V . Condone 134. $\frac{d^2V}{dr^2}$ must be correct and some
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 16\pi - 8\pi r < 0 \text{ when } r = 4 \to \max$	B1	dr ² indication of a negative value seen plus maximum stated

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	22

8 (i)	Gradient $AB = \frac{8-2}{9+3}$ $\left(=\frac{1}{2}\right)$ isw	B1	
	Equation AB and $x = 0 \rightarrow \frac{y-2}{0+3} = \frac{1}{2} \qquad \left(\rightarrow y = \frac{1}{2}x + 3.5 \right)$	M1	Find equation with <i>their</i> gradient and set $x = 0$
	$\rightarrow y = 3.5$	A1	
(ii)	D is (3, 5)	B1	
(iii)	Gradient perpendicular = -2 Equation perpendicular $\frac{y-5}{x-3} = -2$ $\rightarrow (y = -2x + 11)$	M1 A1	Use of $m_1 \times m_2 = -1$ on gradient used for <i>their</i> line in (i)
(iv)	E is (0, 11)	A1FT	
(v)	Area of $ABE = \frac{1}{2} \begin{vmatrix} -3 & 9 & 0 & -3 \\ 2 & 8 & 11 & 2 \end{vmatrix}$	M1	For area of <i>ABE</i> or <i>ECD</i> . $\frac{1}{2}$ and <i>their</i> correct 8 elements must be seen.
	$=\frac{1}{2} -24+99-18+33 =45$	A1	45 condone from $E(0, -4)$
	Area of $EDC = \frac{1}{2} \begin{vmatrix} 3 & 0 & 0 & 3 \\ 5 & 3.5 & 11 & 5 \end{vmatrix}$		
	$=\frac{1}{2} -10.5+33 =11.25$	A1	11.25 condone from $E(0, -4)$

Page 6	age 6 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	22

9 (i)	$\tan 2x = -\frac{5}{4}$ (2x = 128.7, 308.7)	M1	For obtaining and using $\tan 2x = \pm \frac{5}{4}$ or $\pm \frac{4}{5}$
			resulting in $2x =$
	x = 64.3 awrt 154.3 awrt	A1 A1FT	$tanx = \dots \text{ gets M0}$ $their 64.3^{\circ} + 90^{\circ}$
(ii)	$\csc^2 y + 3\csc y - 4 = 0$ or	B1	In any form as a three term quadratic.
	$4\sin^2 y - 3\sin y - 1 = 0$		
	$(\csc y + 4)(\csc y - 1) = 0 \text{or}$		
	$(4\sin y + 1)(\sin y - 1) = 0$		
	, , , ,		
	$\sin y = -\frac{1}{4} \text{or} \sin y = 1$	M1	Solve three term quadratic in cosec <i>y</i>
	1045 0455 00	A 1 A 1 A 1	or sin <i>y</i> Answers must be obtained from the
	y = 194.5, 345.5, 90	A1A1A1	correct quadratic
(iii)	$z + \frac{\pi}{4} = \pi - \frac{\pi}{3}$ or	B1	Accept 2.09, 2.10, $\pi - 1.05$, $\pi - 1.04$ on
			RHS. Could be implied by final answer
	$z + \frac{\pi}{4} = \pi + \frac{\pi}{3}$	B1	Accept 4.19, 4.18, $\pi + 1.05$, $\pi + 1.04$ on
		D1D1	RHS. Could be implied by final answer
	$z = \frac{5\pi}{12}, \frac{13\pi}{12}$	B1B1	Answers must be correct multiples of π .
10 (i)	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t + (c)$	M1	Integrate: coefficient of $\frac{1}{2}$ or 3 seen
	2		with no change in powers of e. Ignore $-t$
	$t = 0, \ s = 0 \rightarrow c = -3.5$		
	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t - 3.5$	A1	All correct and simplified
		A1	
(ii)		M1	Obtain three term quadratic in u or e^{2t}
(11)	$v = 0 \rightarrow u^2 - u - 6 = 0$ oe (u - 3)(u + 2) = 0	1411	Condone sign errors.
	(u-3)(u+2)=0		
		DM1	Solve three term quadratic
	$4u = 3 + t = \frac{1}{2} \ln 3 \text{ or } 0.549$	A1	Accept 0.55 No second answer
(iii)	$t = \frac{1}{2} \ln 3 \rightarrow a = 2e^{2t} + 12e^{-2t}$	B1	Correct differentiation
	=6+4=10	B1	Allow awrt 10.0 or 9.99. No second
			answer.
	1	1	1