

## ADDITIONAL MATHEMATICS

0606/01 For Examination from 2011

Paper 1 SPECIMEN MARK SCHEME

2 hours

# **MAXIMUM MARK: 80**

This document consists of 7 printed pages and 1 blank page.



UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

www.theallpapers.com

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

3

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

### Penalties

- MR -1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

|   |                                                                                                                                                             | 1                          |                                                                                                                                          |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (i) correct diagram                                                                                                                                         | B1                         |                                                                                                                                          |
|   | (ii) correct diagram                                                                                                                                        | B1                         |                                                                                                                                          |
|   | (iii) correct diagram                                                                                                                                       | B1 [3]                     |                                                                                                                                          |
| 2 | $(2x + 1)^{2} > 8x + 9$<br>$4x^{2} - 4x - 8 > 0$<br>$x^{2} - x - 2 > 0$<br>(x + 1)(x - 2) > 0<br>Leads to critical values $x = -1, 2$<br>x < -1 and $x > 2$ | M1<br>DM1<br>A1<br>√A1 [4] | M1 for simplification to 3 term quadratic<br>DM1 for factorisation<br>A1 for critical values<br>Follow through on their critical values. |
| 3 | LHS = $\frac{\sin^2 A + 1 + \cos^2 A + 2\cos A}{(1 + \cos A)\sin A}$                                                                                        | M1<br>A1                   | M1 for attempt to deal with fractions and attempt to obtain numerator<br>A1 correct                                                      |
|   | $=\frac{2+2\cos A}{(1+\cos A)\sin A}$                                                                                                                       | M1                         | M1 for use of $\sin^2 A + \cos^2 A = 1$                                                                                                  |
|   | $=\frac{2}{\sin A}$ leading to 2cos ecA                                                                                                                     | A1 [4]                     |                                                                                                                                          |
| 4 | Substitution of $x = 1$<br>leading to $a + b + 4 = 0$                                                                                                       | M1                         | M1 for substitution of $x = 1$ and equated to 3                                                                                          |
|   | Substitution of $x = -\frac{1}{2}$ leading to                                                                                                               | M1                         | M1 for substitution of $x = -\frac{1}{2}$ and equated to 6                                                                               |
|   | -a+2b-28=0                                                                                                                                                  | A1                         | A1 for both correct                                                                                                                      |
|   | Leading to $a = -12$ , $b = 8$                                                                                                                              | M1<br>A1 [5]               | M1 for solution<br>A1 for both                                                                                                           |
| 5 | (i) $2t^2 - 9t - 5 = 0$<br>(2t + 1)(t - 5) = 0                                                                                                              | M1<br>DM1                  | M1 for attempting to form a quadratic in <i>t</i><br>DM1 for attempt to solve a 3 term quadratic                                         |
|   | $t = \frac{1}{2}, t = 5$                                                                                                                                    | A1 [3]                     | A1 for both                                                                                                                              |
|   | (ii) $x^{\frac{1}{2}} = -0.5, 5$<br>x = 0.25, 25                                                                                                            | M1<br>A1,A1<br>[3]         | M1 for realising that $x^{0.5}$ is equivalent to $t$ (or valid attempt at solution)                                                      |
| 6 | (i) $\mathbf{a} = \frac{1}{13} (5\mathbf{i} - 12\mathbf{j})$                                                                                                | M1, A1<br>[2]              | M1 for a valid attempt to obtain magnitude.                                                                                              |
|   | (ii) $q(5i-12j) + pi + j = 19i - 23j$<br>5q + p = 19<br>-12q + 1 = -23<br>Leading to $q = 2, p = 9$                                                         | M1<br>M1<br>A1 [3]         | M1 for equating like vectors<br>M1 for solution of (simultaneous) equations<br>A1 for both                                               |

| 7  | (i) $y = 4x^2 - 12x + 3$<br>$y = (2x - 3)^2 - 6$                                                                                       | B1<br>B1<br>B1 [3             | B1 for 2 (part of linear factor)<br>B1 for -3 (part of linear factor)<br>B1 for -6                                                                                                |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (ii) $\left(\frac{3}{2}, -6\right)$                                                                                                    | √B1,<br>√B1 [2                | Follow through on their <i>a</i> , <i>b</i> and <i>c</i><br>Allow calculus method.                                                                                                |
|    | (iii) f≥-6                                                                                                                             | √B1 [                         | Follow through on their c                                                                                                                                                         |
| 8  | $\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x}(+c)$                                                                             | B1                            | B1 for $-2e^{-2x}$                                                                                                                                                                |
|    | When $\frac{dy}{dx} = 3$ , $x = 0$ , $\therefore c_1 = 5$<br>$\frac{dy}{dx} = -2e^{-2x} + 5$                                           | M1<br>A1                      | M1 for attempt to find $c_1$                                                                                                                                                      |
|    | $\frac{dx}{dx} = -2e^{-x} + 3$<br>$y = e^{-2x} + 5x(+c_2)$<br>When $x = 2, y = e^{-4} \therefore c_2 = -10$<br>$y = e^{-2x} + 5x - 10$ | B1<br>M1<br>√A1 [0            | B1 for $-2e^{-2x}$<br>M1 for attempt to find $c_2$<br>$\sqrt{-2}$ times their $c_1$                                                                                               |
| 9  | (i) $2^5 + {}^5C_12^4(-3x) + {}^5C_22^3(-3x)^2$<br>$32 - 240x + 720x^2$                                                                | B1<br>B1<br>B1 [2             | B1 for 32 or $2^5$<br>B1 for -240<br>B1 for 720.                                                                                                                                  |
|    | (ii) $32a = 64$ , $a = 2$<br>32b - 240a = -192,<br>b = 9<br>-240b + 720a = c<br>c = -720                                               | B1<br>M1<br>A1<br>M1<br>A1 [: | B1 for $a = 2$<br>M1 for equation in <i>a</i> and <i>b</i> equated to ±192<br>A1 for $b = 9$<br>M1 for equation in <i>a</i> and <i>b</i> equated to <i>c</i><br>A1 for $c = -720$ |
| 10 | (a) (i) $fg(x) = f\left(\frac{x}{x+2}\right)$                                                                                          | M1                            | M1 for order                                                                                                                                                                      |
|    | $=3-\frac{x}{x+2}$                                                                                                                     | A1 [2                         | 2]                                                                                                                                                                                |
|    | (ii) $3 - \frac{x}{x+2} = 10$<br>leading to $x = -1.75$                                                                                | DM1<br>A1 [2                  | DM1 for dealing with fractions sensibly<br>2]                                                                                                                                     |
|    | <b>(b)</b> (i) $h(x) > 4$                                                                                                              | B1 [                          | 1]                                                                                                                                                                                |
|    | (ii) $h^{-1}(x) = e^{x-4}$<br>$h^{-1}(9) = e^{5}  (\approx 148)$<br>or $4 + \ln x = 9$ ,<br>leading to $x = e^{5}$                     | M1<br>A1 [2                   | M1 for attempting to obtain inverse function                                                                                                                                      |
|    | (iii) correct graphs                                                                                                                   | B1<br>B1                      | B1 for each curve                                                                                                                                                                 |
|    |                                                                                                                                        |                               | B1 for idea of symmetry                                                                                                                                                           |

5

| -       |                                                                                                                    |              |                                                                                    |
|---------|--------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------|
| 11 (i)  | $\tan^2 2x = 3$                                                                                                    | M1           | M1 for an equation in $\tan^2 2x$                                                  |
|         | $\tan 2x = (\pm)\sqrt{3}$                                                                                          | DM1          | M1 for attempt to solve using $2x$ correctly                                       |
|         | $2x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$<br>$x = 30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}$ | A1, A1       | A1 for any pair                                                                    |
|         | <i>x</i> = 50°, 60°, 120°, 150                                                                                     | [4]          |                                                                                    |
|         | 2                                                                                                                  |              |                                                                                    |
| (ii)    | $2\csc^2 y + \csc y - 3 = 0$<br>( $2\csc y + 3$ )( $\csc y - 1$ ) = 0                                              | M1, A1       | M1 for correct use of identity or other valid method<br>A1 for a correct quadratic |
|         | (200000 y + 3)(200000 y - 1) = 0<br>$cosec y = -\frac{3}{2}, 1$                                                    | M1           | M1 for solution of quadratic and attempt to solve                                  |
|         | $\operatorname{cosec} y = -\frac{1}{2}, 1$                                                                         |              | correctly                                                                          |
|         | $\sin y = -\frac{2}{3}, 1$                                                                                         |              |                                                                                    |
|         | $y = 221.8^{\circ}, 318.2^{\circ}, y = 90^{\circ}$                                                                 | A1, A1       | A1 for 221.8°, 318.2°, A1 for 90°                                                  |
|         |                                                                                                                    | [5]          |                                                                                    |
| (iii)   | $\cos\left(z+\frac{\pi}{2}\right) = -\frac{1}{2}$                                                                  | M1           | M1 for dealing with sec and order of operations                                    |
|         | $z + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$                                                               |              |                                                                                    |
|         | $z = \frac{\pi}{6}, \frac{5\pi}{6}, \text{ allow } 0.52, 2.62 \text{ rads}$                                        | A1,A1        | A1 for each                                                                        |
|         | 6 6                                                                                                                | [3]          |                                                                                    |
| 12 EITH | IER                                                                                                                |              |                                                                                    |
| (i)     | $\frac{dy}{dx} = \frac{(x+1)2x - x^2}{(x+1)^2}$                                                                    | M1           | M1 for attempt to differentiate a quotient                                         |
|         |                                                                                                                    | A1           | A1 correct allow unsimplified                                                      |
|         | $=\frac{x(x+2)}{(x+1)^2}$                                                                                          |              |                                                                                    |
|         |                                                                                                                    |              |                                                                                    |
|         | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 , x = 0, -2$                                                                  | DM1          | DM1 for equating to zero and an attempt to solve                                   |
|         | y = 0, -4                                                                                                          | A1,A1<br>[5] | A1 for each pair (could be $x = 0$ and $x = -2$ )                                  |
|         | 4                                                                                                                  | [-]          |                                                                                    |
| (ii)    | gradient of normal = $-\frac{4}{3}$                                                                                | M1           | M1 for attempt to obtain gradient of the normal                                    |
|         | -                                                                                                                  | A 1          |                                                                                    |
|         | normal $y = -\frac{4}{3}x + \frac{11}{6}$ , leads to                                                               | A1           | A1 for a correct (unsimplified) normal equation                                    |
|         | <i>M</i> (1.375,0)                                                                                                 | √ B1<br>B1   | Follow through on their normal $P_1$ for $N$                                       |
|         | N (0, -4)                                                                                                          | B1           | B1 for N                                                                           |
|         | Area = 2.75                                                                                                        | M1           | M1 for attempt to get area of triangle                                             |
|         |                                                                                                                    | √A1 [6]      | Ft on their $M$ and $N$ (must be on axes)                                          |

| 12 OR                                                                                                                           |          |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|
| (i) $\frac{dy}{dx} = e^{x-2} - 2$ $\frac{dy}{dx} = 0, e^{x-2} = 2$                                                              | B1<br>B1 | B1 for $e^{x-2}$<br>B1 for $-2$ only                 |
| $\frac{\mathrm{d}y}{\mathrm{d}x} = 0,  \mathrm{e}^{x-2} = 2$                                                                    | M1       | M1 for equating to zero and attempt to solve         |
| $x = 2 + \ln 2$                                                                                                                 | A1       | A1 for <i>x</i>                                      |
| $(2.69) y = 4 - 2\ln 2 (2.61)$                                                                                                  | A1       | A1 for <i>y</i>                                      |
| $\frac{d^2 y}{dx^2} = e^{x-2}, \text{ always +ve } \therefore \text{ min}$                                                      | B1 [6]   | B1 for conclusion from a valid method                |
| (ii)                                                                                                                            |          |                                                      |
| $\int_{0}^{3} (e^{x-2} - 2x + 6) dx = \left[e^{x-2} - x^{2} + 6x\right]_{0}^{3}$ $= (e - 9 + 18) - (e^{-2})$ $= e - e^{-2} + 9$ | M1, A1   | M1 for attempt to integrate                          |
| $= (e - 9 + 18) - (e^{-2})$ $= e - e^{-2} + 9$                                                                                  | M1<br>A1 | M1 for correctly applying limits A1 for $e - e^{-2}$ |
| <i>k</i> = 9                                                                                                                    | B1 [5]   | B1 for k                                             |

# **BLANK PAGE**