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Mathematical Formulae 

 

 

 

 

 

1. ALGEBRA 

 

Quadratic Equation 

 

 For the equation ax2 + bx + c = 0, 
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 where n is a positive integer and 
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2. TRIGONOMETRY 
 

Identities 

 

sin2 A + cos2 A = 1. 

 

sec2 A = 1 + tan2 A. 

 

cosec2 A = 1 + cot2 A. 

 

 

Formulae for ∆ABC 

 

C

c

B

b

A

a

sinsinsin
== . 

 

a2 = b2 + c2 – 2bc cos A. 

 

∆ = 
2

1  bc sin A. 
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Use 

1 Shade the region corresponding to the set given below each Venn diagram. 

 

 

BA

C

 

BA

C

 
 
 )( CBA ∩∪  )( CBA ∪∩  

 

 

 

BA

C

 
 

 )'( CBA ∪∪   [3] 

 

 

 

 

2 Find the set of values of x for which   (2x + 1)2 > 8x + 9. [4] 
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3 Prove that   
A

A

A

A

sin

cos1

cos1

sin +
+
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 ≡ 2cosecA. [4] 
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For 
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4 A function f is such that   f(x) = ax3 + bx2 + 3x + 4.   When f(x) is divided by   x – 1,   the remainder 

is 3.  When f(x) is divided by   2x + 1,   the remainder is 6.  Find the value of a and of b. [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 (i) Solve the equation   2t = 9 + 
t

5
. [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) Hence, or otherwise, solve the equation   2x 2

1

 = 9 + 5x 2

1
−

. [3] 
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6 Given that a = 5i – 12j and that b = pi + j, find 

 

 (i) the unit vector in the direction of a, [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) the values of the constants p and q such that qa + b = 19i – 23j. [3] 
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For 
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7 (i) Express   4x2 – 12x + 3   in the form   (ax + b)2 + c,   where   a, b and c are constants and a > 0. 

    [3] 

 

 

 

 

 

 

 

 (ii) Hence, or otherwise, find the coordinates of the stationary point of the curve   y = 4x2 – 12x + 3. 

    [2] 

 

 

 

 

 

 

 

 

 

 

 (iii) Given that   f(x) = 4x2 – 12x + 3,   write down the range of f. [1] 
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8 A curve is such that   
2

2

d

d

x

y
 = 4e–2x.   Given that 

x

y

d

d
 = 3 when x = 0 and that the curve passes through 

the point (2, e–4), find the equation of the curve. [6] 
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For 

Examiner's 
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9 (i) Find, in ascending powers of x, the first 3 terms in the expansion of   (2 – 3x)5. [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The first 3 terms in the expansion of   (a + bx)(2 – 3x)5   in ascending powers of x are  

64 – 192x + cx2. 

 

 (ii) Find the value of a, of b and of c. [5] 
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For 

Examiner's 

Use 

10 (a) Functions f and g are defined, for x ∈ o, by 

 

    f(x) = 3 – x, 

    g(x) = 
2+x

x

,   where x ≠ 2. 

 

 (i) Find fg(x). [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) Hence find the value of x for which   fg(x) = 10. [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) A function h is defined, for x ∈ o, by   h(x) = 4 + lnx,   where   x > 1. 

 

 (i) Find the range of h. [1] 

 

 

 

 

 

 (ii) Find the value of h–1(9). [2] 
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For 
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 (iii) On the same axes, sketch the graphs of y = h(x) and y = h–1(x). [3] 
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11 Solve the following equations.  

 

 (i) tan2x – 3cot2x,   for   0° < x < 180° [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) cosecy = 1 – 2cot2 y,   for   0° Y y Y 360° [5] 
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 (iii) sec(z + 
2

π

) = –2,   for   0 < z < π radians. [3] 
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12 A curve has equation   y = 
1

2

+x

x

. 

 

 (i) Find the coordinates of the stationary points of the curve. [5] 
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 The normal to the curve at the point where x = 1 meets the x-axis at M.  The tangent to the curve at 

the point where x = –2 meets the y-axis at N. 

 

 (ii) Find the area of the triangle MNO, where O is the origin. [6] 
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