Page 1	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS - JUNE 2003	0606

Mark Scheme Notes

- Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2, 1, 0 means that the candidate can earn anything from 0 to 2 .

- The following abbreviations may be used in a mark scheme or used on the scripts:

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS - JUNE 2003	0606

Penalties

- $\quad M R-1 \quad$ A penalty of $M R-1$ is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- $\quad \mathrm{OW}-1,2$ This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S-1 Occasionally used for persistent slackness.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation.

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 80
SYLLABUS/COMPONENT: 0606/01
ADDITIONAL MATHEMATICS
Paper 1

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	1

1. x or y eliminated completely Uses the discriminant $b^{2}-4 a c$ on a quadratic set to 0 Arrives at $\mathrm{k}=0$ from $32 \mathrm{k}=0$ Correct answer $\mathrm{k} \geq 0$.		Allow as soon as x or y eliminated. Condone poor algebra - quadratic must be set to $0-b^{2}-4 a c=0,<0,>0$ all ok. For k and 0 . For $\mathrm{k} \geq 0$.
2. Length $=(1+\sqrt{6}) \div(\sqrt{2}+\sqrt{ } 3)$ Multiplying top and bottom by $\begin{aligned} & \pm(\sqrt{ } 3-\sqrt{ }) \\ & \rightarrow \sqrt{ } 3+\sqrt{ } 18-\sqrt{ } 2-\sqrt{ } 12 \end{aligned}$ Reduces $\sqrt{ } 18$ to $3 \sqrt{ } 2$ or $\sqrt{ } 12$ to $2 \sqrt{ } 3$ $\begin{aligned} & \rightarrow 2 \sqrt{ } 2-\sqrt{ } 3 \\ & \rightarrow \sqrt{ } 8-\sqrt{ } 3 \end{aligned}$	M1 M1 DM1 A1 [4]	Multiply both top and bottom by $\pm(\sqrt{ } 3-\sqrt{ } 2)$. Allow wherever this comes - not DM. Dependent on first M - collects $\sqrt{ } 2$ and $\sqrt{ } 3$. Co.
3. (i) $32-80 x+80 x^{2}$ (ii) $(\mathrm{k}+\mathrm{x}) \times(\mathrm{i})$ Coeff. of x is $-80 k+32$ Equated with $-8 \rightarrow \mathrm{k}=1 / 2$ or 0.5	$\text { B1 x } 3$ M1 A1 $\sqrt{ }$ [5]	Allow 2^{5} for 32 (if whole series is given, mark the 3 terms). Must be 2 terms considered. For solution of $k=(-8-a) \div(b)$
4. Liner travels 54 km or relative speed of lifeboat is $60 \mathrm{~km} / \mathrm{h}$. Correct vel./distance triangle Use of cosine rule in triangle $\begin{aligned} & V^{2}=60^{2}+36^{2}-2.60 .36 \cos 45 \text { or } \\ & d^{2}=90^{2}+54^{2}-2.90 .54 \cos 45 . \\ & V=42.9 \text { or } d=64.4 \rightarrow V=42.9 \end{aligned}$	B1 M1 A1 A1 [5]	Anywhere. Triangle must be correct with 54 , $45^{\circ}, 90$ or $36,45^{\circ}, 60$ or even 36 , $45^{\circ}, 90$. Allow for other angles. Unsimplified and allow for 135° as well as 45°. Co.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	1

5. Elimination of x or y. $\begin{aligned} & \rightarrow 4 \mathrm{x}^{2}+6 \mathrm{x}-4=0 \text { or } \\ & \mathrm{y}^{2}-12 \mathrm{y}+11=0 \end{aligned}$ Solution of quadratic $=0$. $\begin{aligned} & \rightarrow(0.5,11) \text { and }(-2,1) \\ & \text { Length }=\sqrt{ }\left(2.5^{2}+10^{2}\right)=10.3 \end{aligned}$	M1 A1 DM1 A1 M1A1 [6]	x or y eliminated completely. Correct equation - not necessarily $=$ 0 Usual method for solving quadratic $=$ 0 All correct. Condone incorrect pairing if answers originally correct. Must be correct formula correctly applied.
6. $\begin{aligned} & A^{2}=\left(\begin{array}{cc} 2 & -3 \\ 0 & 1 \end{array}\right)\left(\begin{array}{cc} 2 & -3 \\ 0 & 1 \end{array}\right)\left(\begin{array}{cc} 4 & -9 \\ 0 & 1 \end{array}\right) \\ & A^{-1}=1 / 2 \times\left(\begin{array}{ll} 1 & 3 \\ 0 & 2 \end{array}\right) \\ & B=A^{2}-4 A^{-1}=\left(\begin{array}{cc} 2 & -15 \\ 0 & -3 \end{array}\right) \end{aligned}$	M1A1 B1B1 M1A1 [6]	Do not allow M mark if all elements are squared. If correct, allow both marks. If incorrect, some working is needed to give M mark. B1 for $1 / 2$, B1 for matrix. M mark is independent of first M . Allow M mark for $4 A^{-1}-A^{2}$.
7. $f(x)=4-\cos 2 x$ (i) amplitude $= \pm 1$. Period $=180^{\circ}$ or π (ii) $\operatorname{Max}\left(90^{\circ}, 5\right)$ and $\left(270^{\circ}, 5\right)$	B1B1 B2,1 B1B1 [6]	Independent of graph. Do not allow " 4 to 5". Must be two complete cycles. 0/2 if not. Needs 3 to 5 marked or implied. Needs to start and finish at minimum. Needs curve not lines. Independent of graph (90, 270 gets B1). Allow radians or degrees.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	1

8. (i) O, P, S correct (ii) $34,35,36,37$ correct $\begin{aligned} O \cap S & =\text { odd squares } \rightarrow 4 \\ O \cup S & =\text { odd and even squares } \\ & \rightarrow 49+5=54 \end{aligned}$	B2,1 B2,1 B1 M1A1 [7]	Give B1 if only one is correct. These 2 B marks can only be awarded only if B2 has been given for part (i). Co. Any correct method. Co.
9. (i) (ii) Quadratic in 3^{y} Solution of quadratic $=0$ $\rightarrow 3^{y}=5 \text { or }-10$ Solution of $3^{y}=k$ $y=1.46 \text { or } 1.47$	B1B1 M1A1 M1 DM1 M1 A1 [8]	Anywhere. Forming equation and correctly eliminating "log". Co. Recognising that the equation is quadratic. Correct method of solving the equation $=0$. Not dependent on first M1. Correct method. Co. (not for $\log 5 \div \log 3$). Ignore ans from $3^{y}=-10$.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	1

10.							
x	2	3	4	5	6	$\begin{gathered} \text { M1 } \\ \text { A2,1 } \end{gathered}$	Knows what to do. Points accurate - single line with ruler
y	9.2	8.8	9.4	10.4	11.6		
xy	18.4	26.4	37.6	52.0	69.6		
x^{2}	4	9	16	25	36		
(i) Plots $x y$ against x^{2} or x^{2} against $x y$ to get a line							
	$\mathrm{c}=12 \text { to } 12.5 \text { or }-7.25 \text { to }-7.75$					$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow if $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ used.
$\rightarrow \mathrm{y}=1.6 \mathrm{x}+12 / \mathrm{x}$						$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow if $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ used. Must be $x y=m x^{2}+c$ or $x^{2}=m x y+c$.
(ii) Reads off at $x y=45$ $\rightarrow x=4.5$ to 4.6						M1A1 [9]	Algebra is also ok as long as $x y=45$ is solved with an equation given M1 above.
11. $y=x e^{2 x}$							
(i) $d / d x\left(e^{2 x}\right)=2 e^{2 x}$						B1	$\begin{aligned} & \text { Anywhere - even if } d y / d x=2 x e^{2 x} \\ & \text { or } 2 \mathrm{e}^{2 x} \text {. } \end{aligned}$
$\begin{aligned} & d y / d x=e^{2 x}+x .2 e^{2 x} \\ & \text { sets to } 0 \rightarrow x=-0.5 \end{aligned}$						$\begin{gathered} \text { M1 } \\ \text { M1A1 } \end{gathered}$	Use of correct product rule.
							Not DM mark. Allow for stating his $d y / d x=0$.
(ii)$\begin{aligned} d^{2} y / d x^{2} & =2 e^{2 x}+\left[2 e^{2 x}+4 x e^{2 x}\right] \\ & =4 e^{2 x}(1+x) \rightarrow k=4 \end{aligned}$						M1A1 A1	Use of product rule needed. Allow if he reaches $4 e^{2 x}(1+x)$.
(iii) when $x=-0.5, d^{2} y / d x^{2}$ is $+v e$						M1A1 [9]	No need for figures but needs correct x and correct $d^{2} y / d x^{2}$.
12. EITHER							
At $\mathrm{A}, \mathrm{y}=4$ $d y / d x=2 \cos x-4 \sin x$ $\mathrm{dy} / \mathrm{dx}=0$ when $\tan \mathrm{x}=1 / 2$						B1 M1A1 M1A1	Anywhere. Any attempt at differentiation. Sets to 0 and recognises need for tangent. Co. Accept radians or degrees here.
At $\mathrm{B}, \mathrm{x}=0.464$ or 26.6°						A1	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	1

$\begin{aligned} & \int(2 \sin x+4 \cos x) d x=-2 \cos x+4 \sin x \\ & \text { Area under curve }=[]_{0.464}-[]_{0} \\ & \rightarrow-(-2)=2 . \\ & \text { Reqd area }=2-(4 \times 0.464)=0.144 \\ & (5 \text { or } 6) . \end{aligned}$	M1A1 DM1 M1A1 [11]	Any attempt with trig. functions. x-limits used correctly. If " 0 " ignored or automatically set to 0 , give DMO. Plan mark - must be radians for both M and A .
12. OR $\begin{aligned} & \mathrm{dy} / \mathrm{dx}=1 / 2(1+4 \mathrm{x})^{-1 / 2} \times 4 \\ & \text { At } P, m=2 / 3 \end{aligned}$ Eqn of tangent $y-3=2 / 3(x-2)$ At $B, x=1^{2} / 3$ $\int \sqrt{ }(1+4 x) d x=(1+4 x)^{1.5} \times{ }^{2 / 3} \div 4$ Area under curve $=[]^{2}-[]^{0}=4^{1 / 3}$ Shaded area = Area of trapezium - $4 \frac{1}{3}=1 / 3$ Or Area under $\begin{aligned} & y=2 / 3 x+1^{2} / 3-4^{1} / 3=1 / 3 \\ & {\left[\text { or } \int x d y=\int\left(1 / 4 y^{2}-1 / 4\right) d y\right.} \\ & =y^{3} / 12-y / 4 \end{aligned}$ area to left of curve $=[]_{3}-[]_{1}=1^{2} / 3$ shaded area $=$ $\begin{aligned} & 1^{2} / 3-\text { triangle }\left(1 / 2 \cdot 2 \cdot 1^{1} / 3\right) \\ & =1 / 3] \end{aligned}$	M1A1 M1A1 M1A1 A1 DM1A1 M1 A1 $\begin{gathered}{[M 1 A 1} \\ \text { A1 }\end{gathered}$ DM1A1 M1 A1] [11]	Any attempt with $\mathrm{dy} / \mathrm{dx}$ - not for $\sqrt{ }(1+4 x)=1+2 \sqrt{ } x$. A mark needs everything. Not for normal. Not for " $y+y_{1}$ " or for m on wrong side. Allow A for unsimplified. Any attempt at integration with $(1+4 x)$ to a power. Other $f n$ of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0 . Plan mark independent of M marks. A1 co. Attempt at differentiation. A1 for each term. Must be limits 1 to 3 used correctly. Plan mark independent of other Ms.
DM1 for quadratic equation. Equation mu Formula - must be correctly used. Allow a negative number. Factors - must be an attempt at two bra and solved. Completing the square - must result in	thmetic ts. Ea $\pm k)^{2}=$	0. errors such as errors over squaring bracket must then be equated to 0 Allow if only one root considered.

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 80
SYLLABUSICOMPONENT: 0606/02
ADDITIONAL MATHEMATICS
Paper 2

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	2

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{|c}
1 \\
\\
\\
\\
\\
\\
\hline 7
\end{tabular} \& \begin{tabular}{l}
Put \(x=-b / 2\) (or synthetic or long division to remainder)
\[
\Rightarrow 3 b^{3}+7 b^{2}-4=0 \text { AG }
\] \\
Search \\
\(\Rightarrow b=-1 \quad[\) or \(b=-2] \quad\) (1st root or factor) \\
Attempt to divide \(\Rightarrow 3 b^{2}+4 b-4\) (or \(3 b^{2}+b-2\)) or further search
\[
\Rightarrow b=-2 \quad[\text { or } b=-1]
\] \\
Factorise (or formula) [3 term quadratic] or method for \(3^{\text {rd }}\) value
\[
\Rightarrow b=-2,-1 \text { or }{ }^{2} / 3
\]
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1 A1 \\
M1 \\
DM1 A1
\end{tabular} \\
\hline 2 (i)

(ii)

[6] \& \begin{tabular}{l}
$$
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}= \pm(9 \mathbf{i}+12 \mathbf{j})
$$

Unit vector $=\overrightarrow{A B} \div \sqrt{9^{2}+12^{2}}= \pm(0.6 \mathbf{i}+0.8 \mathbf{j})$ [Accept any equivalent unsimplified version of column vectors, $\pm\binom{ 9}{12}, \pm\binom{ 0.6}{0.8}$]
$$
\begin{aligned}
& \overrightarrow{A C}=2 / 3 \overrightarrow{A B}=6 \mathbf{i}+8 \mathbf{j} \quad(\text { or } \overrightarrow{C B}=1 / 3 \overrightarrow{A B}=3 \mathbf{i}+4 \mathbf{j}) \\
& \overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C} \quad \text { (or } \overrightarrow{O B}-\overrightarrow{C B})=12 \mathbf{i}+5 \mathbf{j} \text { (or equivalent) }
\end{aligned}
$$

 \&

M1

M1 A1

M1

M1 A1
\end{tabular}

\hline 3

$[6]$ \& | $\int\left(3 x^{0.5}+2 x^{-0.5}\right) \mathrm{d} x=3 x^{1.5} / 1.5+2 x^{0.5} / 0.5$ |
| :--- |
| (one power correct sufficient for M mark) |
| $\int_{1}^{8}=(2 \times 8 \sqrt{ } 8+4 \sqrt{ } 8)-(2+4)$ Must be an attempt at integration |
| Putting $\sqrt{ } 8=2 \sqrt{ } 2$ (i.e. one term converted $\sqrt{ }$ to $k \sqrt{2}$) $\Rightarrow-6+40 \sqrt{ } 2$ | \& | M1 A1 A1 |
| :--- |
| M1 |
| B1 $\sqrt{ }$ A1 |

\hline 4

[4] \& | $20\left(4^{2 \mathrm{x}}\right)=20\left(2^{4 \mathrm{x}}\right)$ or $5\left(2^{4 \mathrm{x}+2}\right)$ or $20 \times 16^{\mathrm{x}}$ |
| :--- |
| $2^{x-3} 8^{x+2}=2^{x-3} 2^{3 x+6}=2^{4 x+3}$ or $8 \times 2^{4 x}$ or $8 \times 4^{2 x}$ or 8×16^{x} |
| Cancel $2^{4 x+2}$ or $2^{4 x}$ and simplify $\Rightarrow 4.5$ or equivalent | \& \[

$$
\begin{array}{ll}
\text { B1 } & \text { B1 } \\
\text { B1 } & \\
& \text { B1 }
\end{array}
$$
\]

\hline | 5 (i) |
| :--- |
| (ii) |
| (iii) |
| [7] | \& \[

$$
\begin{array}{ll}
\begin{array}{ll}
f(0)=1 / 2 & f^{2}(0)=f(1 / 2)=(\sqrt{ } e+1) / 4 \approx 0.662(\text { accept } 0.66 \text { or better }) \\
x=\left(e^{y}+1\right) / 4 & \Rightarrow e^{y}=4 x-1 \quad \Rightarrow f^{-1}: x \mapsto \ln (4 x-1) \\
\text { Domain of } \mathrm{f}^{-1} \text { is } & x \geq 1 / 2 \quad \text { Range of } \mathrm{f}^{-1} \text { is } \quad f^{-1} \geq 0
\end{array}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { B1 M1 A1 } \\
\text { M1 A1 } \\
\text { B1 } \quad \text { B1 }
\end{array}
$$
\]

\hline
\end{tabular}

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	2

$10 \text { (i) }$ (ii) (iii)	$\frac{d y}{d x}=\frac{(x-2) 2-(2 x+4) 1}{(x-2)^{2}}=\frac{-8}{(x-2)^{2}} \Rightarrow k=-8$ Must be correct formula for M mark (accept $\frac{-8}{(x-2)^{2}}$ as answer) When $y=0, x=-2$ (B mark is for one solution only) NB. $x=0, y=-2$ $m_{\text {tangent }}=-8 / 16=-1 / 2 \Rightarrow m_{\text {normal }}=+2$ (M is for use of $m_{1} m_{2}=-1$, whether numeric or algebraic) Equation of normal is $y-0=2(x+2)$ (candidate's $\mathrm{m}_{\text {normal }}$ and $[x]_{y=0}$ for M mark) When $y=6, x=4$ $\frac{d y}{d t}=\frac{d y}{d x} \times \frac{d x}{d t}=\frac{-8}{(x-2)^{2}} \times 0.05=\frac{-8}{4} \times 0.05=-0.1(\text { accept } \pm)$ i.e. $\left[\frac{d y}{d x}\right]_{x=4} \times 0.05$ for M mark. \checkmark is for error in k only. (Condone $\mathrm{S} \approx \frac{d y}{d x} \times \mathrm{S}$)	M1 A1 B1 M1 M1 A1 B1 M1 A1 $\sqrt{ }$
11	 (i) $m_{A C}=(4-2) /(7-3)=1 / 2$ $\begin{aligned} & m_{B D}=1 / 2 \\ & m_{B C}=-2 \end{aligned}$ Equation of $B D$ is $y-11=1 / 2(x-13.5)$ i.e. $4 y=2 x+17$ Equation of $B C$ is $y-4=-2(x-7)$ i.e. $y=-2 x+18$ Solving $y=7, x=5.5$	B1 B1 $\sqrt{ }$ B1 $\sqrt{ }$ M1 M1 A1

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0606	2

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the June 2003 examination.

	maximum	minimum mark required for grade:		
	mark available	A	C	E
Component 1	80	54	29	20
Component 2	80	60	34	23

Grade A* does not exist at the level of an individual component.

