Page 1	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0606

Mark Scheme Notes

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0606

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

JUNE 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS Paper 1

	Page 1 M IGCSE EXAM	ark Schen		SyllabusPaperE 200306061		
1.	x or y eliminated completely Uses the discriminant b ² -4ac o quadratic set to 0	n a	M1 M1	Allow as soon as x or y eliminated. Condone poor algebra – quadratic must be set to $0 - b^2$ -4ac = 0, <0, >0 all ok.		
	Arrives at $k = 0$ from $32k = 0$ Correct answer $k \ge 0$.		A1 A1 [4]	For k and 0. For k≥0.		
2.	Length = $(1 + \sqrt{6}) \div (\sqrt{2} + \sqrt{3})$ Multiplying top and bottom by $\pm (\sqrt{3} - \sqrt{2})$ $\rightarrow \sqrt{3} + \sqrt{18} - \sqrt{2} - \sqrt{12}$		M1	Multiply both top and bottom by $\pm(\sqrt{3} - \sqrt{2})$.		
	Reduces $\sqrt{18}$ to $3\sqrt{2}$ or $\sqrt{12}$ to	o 2√ 3	M1	Allow wherever this comes – not DM.		
	$\rightarrow 2\sqrt{2} - \sqrt{3}$		DM1	Dependent on first M – collects $\sqrt{2}$ and $\sqrt{3}$.		
	$\rightarrow \sqrt{8} - \sqrt{3}$		A1 [4]	Co.		
3.	(i) $32 - 80x + 80x^2$	B	31 x 3	Allow 2 ⁵ for 32 (if whole series is given, mark the 3 terms).		
	(ii) $(k + x) \times (i)$ Coeff. of x is $-80k + 32$ Equated with $-8 \rightarrow k = \frac{1}{2}$ or	0.5	M1 A1√ [5]	Must be 2 terms considered. For solution of $k = (-8 - a) \div (b)$		
4.	Liner travels 54km or relative s of lifeboat is 60km/h.	peed	B1	Anywhere.		
	36(54) 450 60(90) (d)					
	Correct vel./distance triangle		B1	Triangle must be correct with 54, 45° , 90 or 36, 45° , 60 or even 36, 45° , 90.		
	Use of cosine rule in triangle $V^2 = 60^2 + 36^2 - 2.60.36\cos 45$	or	M1	Allow for other angles.		
	$d^{2} = 90^{2} + 54^{2} - 2.90.54\cos 45.$		A1	Unsimplified and allow for 135° as well as 45°.		
	$V = 42.9 \text{ or } d = 64.4 \rightarrow V = 42.9$	9	A1 [5]	Co.		

	Page 2	Mark Sch			Syllabus	Paper	
		IGCSE EXAMINATIO	NS – JUN	IE 2003	0606	1	
5.	Eliminati	on of x or y.	M1	x or y eliminate	ad complete	alv	
5.	$\rightarrow 4 x^2 +$	6x - 4 = 0 or	A1		ion – not necessarily		
	$y^2 - 12y$		7.1	0	for solving quadratic		
		of quadratic = 0.	DM1	Usual method			
		·		0			
	$\rightarrow (0.5)^{2}$	11) and (-2, 1)	A1	All correct. Cor	ndone incor	rect	
	, (,	(_, , ,		pairing if answe			
	Length =	$\sqrt{(2.5^2 + 10^2)} = 10.3$	M1A1	Must be correc	t formula co	orrectly	
			[6]	applied.			
	. (2	(-3)(2 - 3)(4 - 9)					
6.	$A^2 = \begin{bmatrix} - \\ 0 \end{bmatrix}$	$\begin{pmatrix} -3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & -9 \\ 0 & 1 \end{pmatrix}$	M1A1	Do not allow M			
	(0			are squared. If			
					rrect, some working is		
		(1, 2)		needed to give	IVI Mark.		
	A ⁻¹ = 1/ ₂ >	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	B1B1	B1 for ½, B1 fo	or matrix.		
		$\begin{pmatrix} 0 & 2 \end{pmatrix}$,			
		$\begin{pmatrix} 2 & 15 \end{pmatrix}$					
	$B=A^2-4$	$4A^{-1} = \begin{pmatrix} 2 & -15 \\ 0 & -3 \end{pmatrix}$	M1A1	M mark is inde	pendent of	first M.	
		$\begin{pmatrix} 0 & -3 \end{pmatrix}$	[6]	Allow M mark f			
	5() 4						
7.	f(x) = 4 -	· cos2x					
	(i) amplit	ude = ± 1 . Period = 180° or	B1B1	Independent of	f graph. Do	not allow	
	π			"4 to 5".	0		
	(ii)		B2,1	Must be two co	molete cvc	$\log 0/2$ if	
	(ii) .~		D2, I		Must be two complete cycles. 0/2 i not. Needs 3 to 5 marked or implie		
	5				Needs to start and finish at		
	1	$\langle \rangle$		minimum. Nee	ds curve no	ot lines.	
	3-1-						
		100 000 210					
	4	10 180 270 360 x					
	Max (90°, 5) and (270°, 5) B1B1 Independent of graph (90, 2		270 aets				
			[6]	B1). Allow radi			

Page 3		Mark Scheme		Syllabus	Paper
	IGCSE EXAMINATIO	DNS – JUN	IE 2003	0606	1
8. %	P 35 37 36 36				
(i) O, P,	S correct	B2,1	Give B1 if only	one is corr	ect.
(ii) 34, 3	5, 36, 37 correct	B2,1	These 2 B mar awarded only i for part (i).		
O∪S=	odd squares $\rightarrow 4$ odd and even squares 49 + 5 = 54	B1 M1A1 [7]	Co. Any correct me	ethod. Co.	
9. (i) $\log_4 2$ $\rightarrow 2x$	$= \frac{1}{2} \log_8 64 = 2$ $x + 5 = 9^{1.5} \rightarrow x = 11$	B1B1 M1A1	Anywhere. Forming equat eliminating "loc		rectly
(ii) Quad	Iratic in 3 ^y	M1	Recognising th quadratic.	at the equa	tion is
Solut	tion of quadratic = 0	DM1	Correct method equation = 0.	d of solving	the
$\rightarrow 3^{y}$	′ = 5 or –10		- 1 01		
Solut	tion of 3 ^y = k	M1	Not dependent method.	on first M1	. Correct
y = 1	.46 or 1.47	A1 [8]	Co. (not for log from $3^{y} = -10$.	5÷log3). lg	nore ans

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0606	1

10.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A2,1	Knows what to do. Points accurate – single line with ruler
c = 12 to 12.5 or -7.25 to -7.75 m = 1.55 to 1.65 or 0.62 to 0.63 xy = 1.6x ² + 12	B1 B1	Allow if y = mx + c used.
or $x^2 = 0.625xy - 7.5$ $\rightarrow y = 1.6x + 12/x$	M1 A1	Allow if $y = mx + c$ used. Must be $xy = mx^2 + c$ or $x^2 = mxy + c$.
(ii) Reads off at xy = 45 \rightarrow x = 4.5 to 4.6	M1A1 [9]	Algebra is also ok as long as xy = 45 is solved with an equation given M1 above.
11. $y = xe^{2x}$		
(i) $d/dx(e^{2x}) = 2e^{2x}$	B1	Anywhere – even if dy/dx = $2x e^{2x}$ or $2 e^{2x}$.
$dy/dx = e^{2x} + x.2 e^{2x}$ sets to $0 \rightarrow x = -0.5$	M1 M1A1	Use of correct product rule. Not DM mark. Allow for stating his dy/dx = 0.
(ii) $d^2y/dx^2 = 2 e^{2x} + [2 e^{2x} + 4x e^{2x}]$ = 4 $e^{2x}(1 + x) \rightarrow k = 4$	M1A1 A1	Use of product rule needed. Allow if he reaches 4e ^{2x} (1 + x).
(iii) when x = -0.5, d^2y/dx^2 is +ve (0.74) \rightarrow Minimum	M1A1 [9]	No need for figures but needs correct x and correct d ² y/dx ² .
12. EITHER		
A B X		
At A, $y = 4$ dy/dx = 2cosx - 4sinx dy/dx = 0 when tanx = $\frac{1}{2}$ At B, x = 0.464 or 26.6°	B1 M1A1 M1A1 A1	Anywhere. Any attempt at differentiation. Sets to 0 and recognises need for tangent. Co. Accept radians or degrees here.

Page 5			Syllabus	Paper		
	IGCSE EXAMINATIO	NS – JUN	NE 2003 0606 1			
∫(2sinx -	+ 4cosx)dx = -2cosx + 4sinx	M1A1	Any attempt with trig. functions.			
Area unc \rightarrow -(-2) =	der curve = [] _{0.464} – [] ₀ = 2.	DM1	x-limits used correctly. If "0" ign or automatically set to 0, give D			
Reqd are (5 or 6).	ea = 2 - (4 × 0.464) = 0.144	M1A1 [11]	Plan mark – m M and A.	ust be radia	ns for both	
12. OR B A	P (2,3) y=√1+4×					
dy/dx = ½ At P, m =	angent y - 3 = $^{2}/_{3}(x - 2)$	M1A1 M1A1	$\sqrt{(1 + 4x)} = 1 + 4x$ everything. Not for normal.	r normal. Not for "y + y ₁ " or for wrong side. Allow A for plified. ttempt at integration with x) to a power. Other fn of x		
	$(4x)dx = (1 + 4x)^{1.5} \times {}^{2}/_{3} \div 4$ der curve = $[]^{2} - []^{0} = 4^{1}/_{3}$	M1A1 A1 DM1A1	(1 + 4x) to a po included, M1 o Use of limits 0			
Shaded a Area of t	area = rapezium - $4^{1}/_{3} = {}^{1}/_{3}$	M1	attempt a value Plan mark inde		M marks.	
Or Area y = $^{2}/_{3}x$	under + $1^2/_3 - 4^1/_3 = 1/_3$	A1	A1 co.			
[or ∫xdy = y³/12 -	$= \int (\frac{1}{4}y^2 - \frac{1}{4}) dy$ y/4	[M1A1 A1	Attempt at diffe each term.	erentiation.	A1 for	
area to le shaded a	eft of curve = $[]_3 - []_1 = 1^2/_3$ area =	DM1A1	Must be limits	1 to 3 used	correctly.	
	$1^{2}/_{3}$ – triangle ($1/_{2}$.2.1 ¹ / ₃) = $1/_{3}$]	M1 A1] [11]	Plan mark inde	pendent of	other Ms.	
DM1 for quad	dratic equation. Equation mus		to 0.			
DM1 for quadratic equation. Equation must be set to 0. Formula - must be correctly used. Allow arithmetical errors such as errors over squaring a negative number. Factors – must be an attempt at two brackets. Each bracket must then be equated to 0 and solved.						

and solved. <u>Completing the square</u> – must result in $(x\pm k)^2 = p$. Allow if only one root considered.

JUNE 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS Paper 2

	Page 1	Mark Scheme	Syllabus	Pa	per
		IGCSE EXAMINATIONS – JUNE 2003	0606		2
1	Dut y - k	0/2 (or synthetic or long division to remainder)			
1	Ful X L	$\Rightarrow 3b^3 + 7b^2 - 4 = 0 \text{ AG}$		M1	A1
					/
	Search	$\Rightarrow b = -1$ [or $b = -2$] (1 st root of	or factor)	M1	A1
	Attempt t	o divide \Rightarrow 3b ² + 4b - 4 (or 3b ² + b - 2) or further searc	h		
		$\Rightarrow b = -2 $ [or $b = -1$]		M1	
	Factorise	(or formula) [3 term quadratic] or method for 3 rd value			
	1 000130	$\Rightarrow b = -2, -1 \text{ or }^2/_3$		DM1	A1
[7]					
2 (i)	$\overrightarrow{AB} = \overrightarrow{O}$	$\vec{B} - \vec{OA} = \pm(9i + 12j)$		M1	
	112 01				
	Unit vect	or = $\overrightarrow{AB} \div \sqrt{9^2 + 12^2}$ = ±(0.6i + 0.8j) [Accept any equi	valent		
	unsimplif	ed version of column vectors, $\pm \begin{pmatrix} 9\\12 \end{pmatrix}$, $\pm \begin{pmatrix} 0.6\\0.8 \end{pmatrix}$]		M1	A1
		(12) (0.8)			
/::)	\rightarrow 2				
(ii)	$AC = \frac{2}{3}$	\overrightarrow{AB} = 6i + 8j (or \overrightarrow{CB} = $\frac{1}{3}\overrightarrow{AB}$ = 3i + 4j)		M1	
	→	$\rightarrow \longrightarrow \longrightarrow \longrightarrow$			
[6]	OC = O	$\vec{A} + \vec{AC}$ (or $\vec{OB} - \vec{CB}$) = 12i + 5j (or equivalent)		M1	A1
3	$\int (3x^{0.5} + x^{0.5})$	$2x^{-0.5}$) dx = $3x^{1.5}/1.5 + 2x^{0.5}/0.5$			
		er correct sufficient for M mark)		M1 A	1 A 1
	(one pow				
	$\int_{0}^{8} - (2x)$	$8\sqrt{8} + 4\sqrt{8} - (2 + 4)$ Must be an attempt at integrat	ion	M1	
	$J_1 - (2)$	(2 + 4) must be an attempt at integrat	1011		
	Putting $$	8 = $2\sqrt{2}$ (i.e. one term converted $\sqrt{10}$ to k $\sqrt{2}$)		В1√	A1
[6]		⇒-6 + 40√ 2			
4	$16^{x+1} = 2^{4}$	^{x+4} or 16 x 2 ^{4x} or 16 x 4 ^{2x} or 16 x 16 ^x			
		20(2 ^{4x}) or 5(2 ^{4x+2}) or 20 x 16 ^x		B1	B1
	ov-3 ov+2			-	
	2*** 8*** =	$2^{x-3} 2^{3x+6} = 2^{4x+3}$ or 8 x 2^{4x} or 8 x 4^{2x} or 8 x 16^{x}		B1	
	Cancel 2	$^{4x+2}$ or 2 ^{4x} and simplify \Rightarrow 4.5 or equivalent			B1
[4]					
5 (i)	$f(0) = \frac{1}{2}$	$f^{2}(0) = f(\frac{1}{2}) = (\sqrt{e} + 1)/4 \approx 0.662$ (accept 0.66	or better)	B1 N	1 A1
(ii)	x = (e ^y +	1)/4 $\Rightarrow e^y = 4x - 1$ $\Rightarrow f^1 : x \mapsto I$	n(4x - 1)	M	1 A1
(")		\rightarrow		171	
(iii)	Domain o	of f^1 is $x \ge \frac{1}{2}$ Range of f^1 is $f^1 \ge 0$		B1	B1
		-			
[7]					

	Page 2 Mark Scheme Syllabus		Pa	per	
		IGCSE EXAMINATIONS – JUNE 2003	0606		2
6 (i)	$x^2 - 8x +$		= 2, 6	M1	A1 A1
	$x^2 - 8x +$	$12 > 0 \qquad \Rightarrow \{x : x < 2\} \cup \{x : x > 6\}$			AT
(ii)	$x^2 - 8x =$ $x^2 - 8x <$	· · · · · · · · · · · · · · · · · · ·	าร	M1 A1	
	x - 8x <	$0 \qquad \Rightarrow \{x: 0 < x < 8\}$		/ 1	
(iii)	Solution $\begin{cases} r \cdot 0 < r \end{cases}$	set of $ x^2 - 8x + 6 < 6$ is combination of (i) and (ii) < 2} {x: 6 < x < 8}		B1 (one	B1 for
[7]	(1.0 < 1			each	
[/] 7 (i)	6! = 720			range B1	=)
		FL 400			
(ii)	M ⇒	5! = 120		M1	A1
(iii)	4! •	48		M1	A1
(iv)	6!/4! 2! =	15 Accept ${}_{6}C_{4}$ or ${}_{6}C_{2} = 15$		B1	
(v)				M1	A1
[8]	(Listing –	ignoring repeats \geq 8 [M1] \Rightarrow 10 [A1])			
8 (i)		in x and $\cos x \implies \sin x = 5 \cos x$		M1	
	Divide by $x = 78.7^{\circ}$		ily)	M1 A1	A1√
(11)				B1	7 (I V
(ii)		$\cos^2 y \text{ by } 1 - \sin^2 y$ $4\sin y - 4 = 0$		DI	
		Factorise (or formula) (3 term quadratic) $\Rightarrow \sin y = \frac{2}{3}$		M1	
[8]	y = 0.730) (accept 0.73 or better) or (2.41) i.e. π (or $rac{22}{7}$) less 1 st s	solution	A1	A1√
9 (i)	$\int (12t - t^2)$	$^{2}) dt = 6t^{2} - \frac{1}{3}t^{3}$		M1	A1
	J(0 to $t = 6$ distance = $\int_{0}^{6} = 144$			
		the distance = $\int_0^{10} - 144$ and = 36 \Rightarrow from t = 6 to t = 12 distance = 36 x 6 (= 216))		A1
			/		B1
		eceleration distance = $(0^2 - 36^2) \div 2(-4) = 162$ \(\lambda is fine for M mark but value of t must be from constant)			
		tion not $12 - 2t = \pm 4$			
	Total dist	ance = 144 + 216 + 162 = 522		M1	
	V				A1
(ii)					
		t			
[8]				B2, 1	, 0
	1				

Γ	Page 3	Mark Scheme	Syllabus	Paper
		IGCSE EXAMINATIONS – JUNE 2003	0606	2
10	(i) $\frac{dy}{dx} = \frac{(x)}{(x)}$	$\frac{(x-2)^2 - (2x+4)^2}{(x-2)^2} = \frac{-8}{(x-2)^2} \Rightarrow k = -8$		M1 A1
	Must be	correct formula for M mark (accept $\frac{-8}{(x-2)^2}$ as answe	r)	
(i	ii) When y =	= 0, <i>x</i> = -2 (B mark is for <i>one</i> solution only) NB. <i>x</i> = 0, y	/=-2	B1
		$-8/16 = -1/2 \Rightarrow m_{normal} = +2$ use of m ₁ m ₂ = -1, whether numeric or algebraic)		M1
		of normal is $y - 0 = 2(x + 2)$ te's m _{normal} and $[x]_{y=0}$ for M mark)		M1 A1
(ii	ii) When y =			B1
	$\frac{dy}{dt} = \frac{dy}{dx}$	$\times \frac{dx}{dt} = \frac{-8}{(x-2)^2} \times 0.05 = \frac{-8}{4} \times 0.05 = -0.1 \text{ (accept } \pm\text{)}$		M1 A1√
	i.e. $\left[\frac{dy}{dx}\right]$	x 0.05 for M mark. $x=4$		
[9]	$\sqrt{1000}$ is for e	rror in k only. (Condone S $\approx \frac{dy}{dx}$ x S)		
11	I EITHER 𝒴▲	D (13½, 11)		
	o $\frac{A}{(3,2)}_{E^{1/2}}$	B C (7, 4)		
	(i) m _{AC} =	$(4 - 2)/(7 - 3) = \frac{1}{2}$		B1
	m _{BD} =	· 1/2		B1√
	m _{BC} =	-2		B1√
	Equat	tion of <i>BD</i> is $y - 11 = \frac{1}{2}(x - 13.5)$ i.e. $4y = 2x + 17$		M1
	Equat	tion of <i>BC</i> is $y - 4 = -2(x - 7)$ i.e. $y = -2x + 18$		M1
	Solvir	ng $y = 7, x = 5.5$		M1 A1

			Syllabus	Paper		
		IGCSE EXAMINATIONS – JUNE 2003	0606		2	
	(ii) $\frac{\Delta EBD}{\Delta EAC}$ Quad	- = (ratio of corresponding sides or x- or y- steps) ² = 4	4/1	M1 A1	A1	
[10]	area d	nd $E(1/2, -3)$ and then use array method to find <i>one</i> of quadrilateral <i>ABDC</i> = 22.5 area ΔEBD = 30 other area and hence ratio = 3/4 or equivalent]	:	M1 A1	A1	
11	OR C A 6	r B				
	(i) (r + 6)	$r^{2} + 5^{2} = (r + 7)^{2}$		M1		
	Solve	$\Rightarrow r = 6$		M1	A1	
	tan A	OB = 5/12 AOB = 0.395 or 22.6°		M1		
	Length of arc $AB = 6 \times 0.395 = 2.37$ or better					
	(ii) Sector $AOB = \frac{1}{2} \times 6^2 \times 0.395 = 7.11$					
	Shade	ed area = ½ x 5 x 12 - 7.11		M1		
	All fig	ures in sector and triangle correct $$		A1√		
[10]		22.9 or bett	er	A1		

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the June 2003 examination.

	maximum	minimum mark required for grade:			
	mark available	A	С	E	
Component 1	80	54	29	20	
Component 2	80	60	34	23	

Grade A* does not exist at the level of an individual component.