MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(i) \\
(ii) \\
(iii) (a) \\
(b) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
\(180^{\circ}\) or \(\pi\) radians or 3.14 radians (or better) \\
2
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
B1
\end{tabular} \& \begin{tabular}{l}
\(y=\sin 2 x\) all correct \\
for either \(\uparrow \downarrow \uparrow\) starting at their highest value and ending at their lowest value Or a curve with highest value at \(y=3\) and lowest value at \(y=-1\) completely correct graph
\end{tabular} \\
\hline 2 (i) \& \[
\begin{aligned}
\tan \theta \& =\frac{(8+5 \sqrt{2})(4-3 \sqrt{2})}{(4+3 \sqrt{2})(4-3 \sqrt{2})} \\
\& =\frac{32-24 \sqrt{2}+20 \sqrt{2}-30}{16-18} \\
\& =1+2 \sqrt{2} \mathrm{cao}
\end{aligned}
\] \& M1

A1 \& | attempt to obtain $\tan \theta$ and rationalise. |
| :--- |
| Must be convinced that no calculators are being used |

\hline
\end{tabular}

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

(ii)	$\begin{aligned} \sec ^{2} \theta & =1+\tan ^{2} \theta \\ = & 1+(-1+2 \sqrt{2})^{2} \\ = & 1+1-4 \sqrt{2}+8 \\ = & 10-4 \sqrt{2} \end{aligned}$ Alternative solution: $\begin{aligned} A C^{2} & =(4+3 \sqrt{2})^{2}+(8+5 \sqrt{2})^{2} \\ & =148+104 \sqrt{2} \\ \sec ^{2} \theta & =\frac{148+104 \sqrt{2}}{(4+3 \sqrt{2})^{2}} \\ & =\frac{148+104 \sqrt{2}}{(4+3 \sqrt{2})^{2}} \times \frac{34-24 \sqrt{2}}{34-24 \sqrt{2}} \\ & =10-4 \sqrt{2} \end{aligned}$	M1 DM1 A1 M1 DM1 A1	attempt to use $\sec ^{2} \theta=1+\tan ^{2} \theta$, with their answer to (i) attempt to simplify, must be convinced no calculators are being used. Need to expand $(-1+2 \sqrt{2})^{2}$ as 3 terms
3 (i) (ii)	$\begin{aligned} & 64+192 x^{2}+240 x^{4}+160 x^{6} \\ & \left(64+192 x^{2}+240 x^{4}\right)\left(1-\frac{6}{x^{2}}+\frac{9}{x^{4}}\right) \\ & \text { Terms needed } 64-(192 \times 6)+(240 \times 9) \\ & \quad=1072 \end{aligned}$	B3,2,1,0 B1 M1 A1	-1 each error expansion of $\left(1-\frac{3}{x^{2}}\right)^{2}$ attempt to obtain 2 or 3 terms using their (i)

4 (a) (b)	$\mathbf{X}^{2}=\left(\begin{array}{cc} 4-4 k & -8 \\ 2 k & -4 k \end{array}\right)$ Use of $\mathbf{A A}^{-1}=\mathbf{I}$ $\left(\begin{array}{ll} a & 1 \\ b & 5 \end{array}\right)\left(\begin{array}{cc} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$ Any 2 equations will give $a=2, b=4$ Alternative method 1: $\frac{1}{5 a-b}\left(\begin{array}{cc} 5 & -1 \\ b & a \end{array}\right)=\left(\begin{array}{cc} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{array}\right)$ Compare any 2 terms to give $a=2, b=4$ Alternative method 2: Inverse of $\frac{1}{6}\left(\begin{array}{cc}5 & -1 \\ -4 & 2\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 4 & 5\end{array}\right)$	B2,1,0 M1 A1,A1 M1 A1,A1 M1 A1,A1	-1 each incorrect element use of $\mathbf{A A}^{-1}=\mathbf{I}$ and an attempt to obtain at least one equation. correct attempt to obtain \mathbf{A}^{-1} and comparison of at least one term. reasoning and attempt at inverse
5	$\begin{aligned} & 3 x-1=x(3 x-1)+x^{2}-4 \text { or } \\ & y=\left(\frac{y+1}{3}\right) y+\left(\frac{y+1}{3}\right)^{2}-4 \\ & 4 x^{2}-4 x-3=0 \text { or } 4 y^{2}-4 y-35=0 \\ & (2 x-3)(2 x+1)=0 \text { or }(2 y-7)(2 y+5)=0 \end{aligned}$ leading to $x=\frac{3}{2}, x=-\frac{1}{2}$ and $y=\frac{7}{2}, y=-\frac{5}{2}$ Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$ Perpendicular gradient $=-\frac{1}{3}$ Perp bisector: $y-\frac{1}{2}=-\frac{1}{3}\left(x-\frac{1}{2}\right)$ $(3 y+x-2=0)$	M1 DM1 A1 A1 B1 M1 M1 A1	equate and attempt to obtain an equation in 1 variable forming a 3 term quadratic equation and attempt to solve x values y values for midpoint, allow anywhere correct attempt to obtain the gradient of the perpendicular, using $A B$ straight line equation through the midpoint; must be convinced it is a perpendicular gradient. allow unsimplified

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

6 (i) (ii) (iii)	$\mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}-\frac{15}{4}+\frac{b}{2}-2=0$ leading to $a+4 b=46$ $\mathrm{f}(1)=a-15+b-2=5$ leading to $a+b=22$ giving $b=8$ (AG), $a=14$ $(2 x-1)\left(7 x^{2}-4 x+2\right)$ $7 x^{2}-4 x+2=0$ has no real solutions as $\begin{aligned} & b^{2}<4 a c \\ & 16<56 \end{aligned}$	M1 A1 M1,A1 M1,A1 M1 A1	correct use of either $\mathrm{f}\left(\frac{1}{2}\right)$ or $\mathrm{f}(1)$ paired correctly both equations correct (allow unsimplified) M1 for solution of equations A1 for both a and b. AG for b. M1 for valid attempt to obtain $\mathrm{g}(x)$, by either observation or by algebraic long division. use of $b^{2}-4 a c$ correct conclusion; must be from a correct $\mathrm{g}(x)$ or $2 \mathrm{~g}(x) \quad$ www
$\begin{array}{rrr}7 & \text { (i) } \\ & \\ \\ \\ \\ \\ \\ \\ & \\ & \text { (ii) }\end{array}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x-1) \frac{8 x}{\left(4 x^{2}+2\right)^{-\ln \left(4 x^{2}+3\right)}}}{(x-1)^{2}}$ When $x=0, y=-\ln 3$ oe $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\ln 3 \text { so gradient of normal is } \frac{1}{\ln 3}$ (allow numerical equivalent) normal equation $y+\ln 3=\frac{1}{\ln 3} x$ or $y=0.910 x-1.10$, or $y=\frac{10}{11} x-\frac{11}{10} \quad$ cao (Allow $y=0.91 x-1.1$) when $x=0, \quad y=-\ln 3$ when $y=0, x=(\ln 3)^{2}$ Area $= \pm 0.66$ or ± 0.67 or awrt these or $\frac{1}{2}(\ln 3)^{3}$	M1 B1 A1 B1 M1 M1 A1 M1 A1	differentiation of a quotient (or product) correct differentiation of $\ln \left(4 x^{2}+3\right)$ all else correct for y value valid attempt to obtain gradient of the normal attempt at normal equation must be using a perpendicular valid attempt at area

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

$8 \quad$ (i)	Range for f: $y \geq 3$ Range for $\mathrm{g}: ~ y \geq 9$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(ii)	$\begin{aligned} & x=-2+\sqrt{y-5} \\ & \quad \mathrm{~g}^{-1}(x)=-2+\sqrt{x-5} \\ & \quad \text { Domain of } \mathrm{g}^{-1}: x \geq 9 \end{aligned}$	M1 A1 B1	attempt to obtain the inverse function Must be correct form for domain
	Alternative method: $\begin{aligned} & y^{2}+4 y+9-x=0 \\ & y=\frac{-4+\sqrt{16-4(9-x)}}{2} \end{aligned}$	M1 A1	attempt to use quadratic formula and find inverse must have + not \pm
(iii)	$\begin{aligned} & \text { Need } \mathrm{g}\left(3 \mathrm{e}^{2 x}\right) \\ & \begin{array}{l} \left(3 \mathrm{e}^{2 x}+2\right)^{2}+5=41 \\ \text { or } 9 \mathrm{e}^{4 x}+12 \mathrm{e}^{2 x}-32=0 \\ \quad\left(3 \mathrm{e}^{2 x}-4\right)\left(3 \mathrm{e}^{2 x}+8\right)=0 \end{array} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \end{gathered}$	correct order correct attempt to solve the equation
	leading to $3 \mathrm{e}^{2 x}+2= \pm 6$ so $x=\frac{1}{2} \ln \frac{4}{3}$ or $\mathrm{e}^{2 x}=\frac{4}{3}$ so $x=\frac{1}{2} \ln \frac{4}{3}$	M1 A1	dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
	Alternative method: Using $\mathrm{f}(x)=\mathrm{g}^{-1}(41), \mathrm{g}^{-1}(41)=4$ leading to $3 \mathrm{e}^{2 x}=4$, so $x=\frac{1}{2} \ln \frac{4}{3}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	correct use of g^{-1} dealing with $\mathrm{g}^{-1}(41)$ to obtain an equation in terms of $\mathrm{e}^{2 x}$ dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$\begin{aligned} & \mathrm{g}^{\prime}(x)=6 \mathrm{e}^{2 x} \\ & \mathrm{~g}^{\prime}(\ln 4)=96 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	B1 for each

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

(b)	$\left(\sec ^{2} 3 y-1\right)-2 \sec 3 y-2=0$	M1	use of the correct identity
	$\begin{aligned} & \sec ^{2} 3 y-2 \sec 3 y-3=0 \\ & (\sec 3 y+1)(\sec 3 y-3)=0 \end{aligned}$	M1	attempt to obtain a 3 term quadratic equation in sec $3 y$ and attempt to solve
	$\text { leading to } \cos 3 y=-1, \cos 3 y=\frac{1}{3}$	M1	dealing with sec and $3 y$ correctly
	$\begin{aligned} & 3 y=180^{\circ}, 540^{\circ} \quad 3 y=70.5^{\circ}, 289.5^{\circ}, 430.5^{\circ} \\ & y=60^{\circ}, 180^{\circ}, 23.5^{\circ}, 96.5^{\circ}, 143.5^{\circ} \end{aligned}$	$\begin{gathered} \mathbf{A 1 , A 1} \\ \text { A1 } \end{gathered}$	A1 for a correct pair, A1 for a second correct pair, A1 for correct $5^{\text {th }}$ solution and no other within the range
	Alternative 1: $\sec ^{2} 3 y-2 \sec 3 y-3=0$	M1	use of the correct identity
	leading to $3 \cos ^{2} 3 y+2 \cos 3 y-1$	M1	attempt to obtain a quadratic equation in $\cos 3 y$ and attempt to solve
	$(3 \cos y-1)(\cos y+1)=0$	M1	dealing with $3 y$ correctly A marks as above
	Alternative 2: $\begin{aligned} & \frac{\sin ^{2} y}{\cos ^{2} y}-\frac{2}{\cos y}-2=0 \\ & \left(1-\cos ^{2} x\right)-2 \cos x-2 \cos ^{2} x=0 \end{aligned}$	M1	use of the correct identity, $\tan y=\frac{\sin y}{\cos y}$ and $\sec y=\frac{1}{\cos y}$, then as before
(c)	$z-\frac{\pi}{3}=\frac{\pi}{3}, \frac{4 \pi}{3}$	M1	correct order of operations
	$z=\frac{2 \pi}{3}, \frac{5 \pi}{3}$ or 2.09 or $2.1,5.24$	A1,A1	A1 for a correct solution A1 for a second correct solution and no other within the range

