MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2 (Paper 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	23

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

1 (a) (b)	$\begin{aligned} & \frac{\log _{3} x}{\log _{3} 27} \\ & \frac{\log _{3} x}{3} \text { isw } \\ & \log _{a} 15-\log _{a} 3=\log _{a} 5 \text { soi } \\ & \log _{a} 5^{3} \text { or } \log _{a} a \\ & \log _{a} y=\log _{a} 125 a \Rightarrow y=125 a \end{aligned}$	M1 A1 M1 M1 A1	Can use other interim bases if all correct but M1 when in base 3 only NOT $\log _{3} x \div 3$
2 (a) (b)	$[\mathrm{f}(x)=] 2 x-4$ and $[\mathrm{f}(x)=]-2 x+4$	$\begin{gathered} \text { B1,B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{gathered}$	Condone $y=\ldots$. correct shape; y intercept marked or seen nearby; intent to tend to $y=3$ (i.e. not tending to or cutting x-axis)
3 (a) (b) (i) (ii)	$\begin{aligned} & \mathbf{A}=\frac{1}{4}\left[\left(\begin{array}{rrr} 51 & -8 & 19 \\ 31 & 2 & 65 \end{array}\right)-\left(\begin{array}{rrr} 20 & 0 & -5 \\ 15 & -10 & 25 \end{array}\right)\right] \\ & \mathbf{A}=\left(\begin{array}{rrr} 8 & -2 & 6 \\ 4 & 3 & 10 \end{array}\right) \end{aligned}$ The (total) value of the stock in each of the 3 shops The total value of the stock in all 3 shops	M1 A1 B1 B1	Integer values Must have "each" oe Must have "total" oe

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	23

$4 \quad$ (i) (ii) (iii)	$\frac{P T}{8}=\tan \left(\frac{3 \pi}{8}\right)$ oe $P T=19.3$ $\frac{1}{2} \times 8^{2} \times \frac{3 \pi}{4}$ oe (75.4) $8 \tan \left(\frac{3 \pi}{8}\right) \times 8$ - their sector oe ($=154.5$ - $^{`} 75.4^{\prime}$) 79.1 $8\left(\frac{3 \pi}{4}\right)$ oe (18.8) $\left[6 \pi+16 \tan \left(\frac{3 \pi}{8}\right)\right]=57.5$	M1 A1 M1 M1 A1 M1 A1	$\frac{P T}{\sin \frac{3 \pi}{8}}=\frac{8}{\sin \frac{\pi}{8}}$ awrt 19.3 or $\frac{1}{2} \times 8^{2} \times \frac{3 \pi}{8}$ $8 \times$ their PT - their sector awrt 79.1 Accept 57.4 to 57.5
5 (a) (b) (i) (ii) (iii)	Permutation because the order matters oe $\begin{aligned} & { }^{6} C_{4}+{ }^{5} C_{4}+{ }^{7} C_{4} \\ & 55 \\ & { }^{2} C_{1} \times{ }^{6} C_{1} \times{ }^{5} C_{1} \times{ }^{7} C_{1} \\ & 420 \end{aligned}$ ${ }^{6} C_{3} \times{ }^{2} C_{1} \text { or }{ }^{2} C_{2} \times{ }^{5} C_{1} \times{ }^{6} C_{1}$ summation 70	B1 M1 A1 M1 A1 M1 M1 A1	3 correct terms added 4 correct terms multiplied for either correct product adding two correct products If 0 scored, then SC 1 for $1,1,1,0$ and $0,0,2,1$ seen
(i) (ii) (iii)	$\begin{aligned} & 2 t^{2}-14 t+12=0 \\ & (t-1)(t-6) \text { oe } \\ & (t=) 1 \\ & \int\left(2 t^{2}-14 t+12\right) \mathrm{d} t \\ & (s=) \frac{2 t^{3}}{3}-\frac{14 t^{2}}{2}+12 t \\ & (a=) \frac{\mathrm{d} v}{\mathrm{~d} t} \quad(4 t-14) \\ & {[4(3)-14=]-2 \text { cao }} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A2,1,0 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Can use formula, etc. If $t=1$ with no working, then M1A1 -1 for each error or for $+c$ left in or limits introduced
Page 4	Mark Scheme	Syllabus	Paper
:---:	:---:	:---:	:---:
	Cambridge IGCSE - May/June 2015	0606	23
(a) (b) (i) (ii) (iii)	$\begin{aligned} & \overrightarrow{A B}=15 \mathbf{b}-5 \mathbf{a}=5(3 \mathbf{b}-\mathbf{a}) \text { or } \\ & \overrightarrow{B C}=24 \mathbf{b}-3 \mathbf{a}-15 \mathbf{b}=3(3 \mathbf{b}-\mathbf{a}) \text { or } \\ & \overrightarrow{A C}=24 \mathbf{b}-3 \mathbf{a}-5 \mathbf{a}=8(3 \mathbf{b}-\mathbf{a}) \end{aligned}$ Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (A, B or C as appropriate) $\begin{aligned} & 2 \mathbf{i}+11 \mathbf{j} \text { soi } \\ & \Rightarrow \sqrt{2^{2}+11^{2}} \\ & \sqrt{125} \text { or } 5 \sqrt{5} \text { or } 11.2(3 \text { s.f. }) \text { or better }) \end{aligned}$ $\frac{1}{5 \sqrt{5}}(2 \mathbf{i}+11 \mathbf{j})$ isw $\frac{\mathbf{i}-4 \mathbf{j}+3 \mathbf{i}+7 \mathbf{j}}{2}$ or $\mathbf{i}-4 \mathbf{j}+\frac{2 \mathbf{i}+11 \mathbf{j}}{2}$ or $3 \mathbf{i}+7 \mathbf{j}-\frac{2 \mathbf{i}+11 \mathbf{j}}{2}$ $2 \mathbf{i}+1.5 \mathbf{j}$	B1 B1 B1dep B1 B1fT B1fT M1 A1	Any correct simplified vector Any second simplified vector Dep on both B marks being awarded. ft their $2 \mathbf{i}+11 \mathbf{j}$ ($\operatorname{not} \overrightarrow{O P}$ or $\overrightarrow{O Q}$) ft their answers from (i)
:---:	:---:	:---:	:---:
(ii) (b) (i) (ii) (c)	$\begin{aligned} & k \mathrm{e}^{4 x+3}(+c) \mathrm{oe} \\ & k=\frac{1}{4} \mathrm{oe} \\ & \frac{1}{4}\left(\mathrm{e}^{4(3)+3}-\mathrm{e}^{4(2.5)+3}\right) \text { or better } \\ & 706650.99 \ldots=707000 \text { to } 3 \text { sf or better } \\ & k \sin \left(\frac{x}{3}\right)(+c) \\ & k=3 \\ & 3 \sin \left(\frac{\pi}{6} \times \frac{1}{3}\right)-3 \sin (0) \\ & 0.520944 \ldots=0.521 \text { to } 3 \text { sf or better } \\ & \int\left(x^{-2}+2+x^{2}\right) \mathrm{d} x=\frac{x^{-1}}{-1}+2 x+\frac{x^{3}}{3} \\ & +c \end{aligned}$	M1 A1 DM1 A1 M1 A1 DM1 A1 B1 M1 A1 B1	any constant, non-zero k ft their integral attempt Accept $\frac{1}{4}\left(\mathrm{e}^{15}-\mathrm{e}^{13}\right)$ any constant, non-zero k Dep on their integral attempt in sin; condone omission of lower limit Accept $3 \sin \left(\frac{\pi}{18}\right)$ Expands - accept unsimplified integration of their 3 term expansion Fully correct $+c$
Page 5	Mark Scheme	Syllabus	Paper
:---:	:---:	:---:	:---:
	Cambridge IGCSE - May/June 2015	0606	23
$9 \quad$ (a) (b) (i) (ii) (iii)	$(4 x-1)(x+5)[\leqslant 0]$ critical values $\frac{1}{4}$ and -5 soi $\begin{aligned} & -5 \leqslant x \leqslant \frac{1}{4} \\ & (x+4)^{2}-25 \text { or } a=4 \text { and } b=-25 \end{aligned}$ (Greatest value $=$) 25 $x=-4$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1, B1 } \\ \text { B1ft } \\ \text { B1ft } \\ \text { B1 } \\ \text { B1 } \end{gathered}$	Solves quadratic Accept: $\left[-5, \frac{1}{4}\right] ;-5 \leq x$ AND $x \leq 0.25$ Must be clear Correct shape with maximum in second quadrant and crossing positive and negative axes correctly All 3 intercepts correctly shown on graph
:---:	:---:	:---:	:---:
10 (i) (ii) (iii)	$\begin{aligned} & \ln y=\ln \left(A b^{x}\right) \Rightarrow \ln y=\ln A+\ln b^{x} \\ & \Rightarrow \ln y=\ln A+x \ln b \\ & \ln A=11.4 \Rightarrow A=\mathrm{e}^{\text {their } 11.4} \\ & A=90000 \text { cao } \\ & \ln b=-1 \\ & b=0.4 \text { cao } \\ & x=2.5 \Rightarrow \ln y=9 \\ & y=\mathrm{e}^{9} \text { or } 8000 \text { to } 1 \mathrm{sf} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	condone misread of scale for M1 (11.2 only) Allow awrt - 1 Allow awrt 8100
11 (i) (ii)	$7-x, x, 6-x \text { oe }$ their attempt at $7-x+x+6-x+16=25$ oe $x=4$ $23-y, y, 9-y$ oe $\begin{array}{r} 48=30+25+15-7-6-(\text { their } 4+y)+\text { their } 4 \\ \text { oe soi } \end{array}$ $y=9$	B1 M1 A1 B1 M1 A1	Condone $x=4$ for all 3 marks or $\mathrm{n}(A \cup C)=48-16=32$ or $32=30+15-($ their $4+y)$ or $48=(23-y)+3+16+y+4$ $+2+(9-y)$ Condone $y=9$ for all 3 marks
(iii)	$\mathrm{n}(C)=15 \text { and } y+\mathrm{n}(B \cap C)=9+6=15$ [and so $A^{\prime} \cap B^{\prime} \cap C=\varnothing$].	B1	or equivalent deduction

