MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3				Syllabus	Paper	
		IGCSE – October/Nove	mber 2	013		0606	11
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1 B1	, [3]	B1 for	each	
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	$9 = 4 (k + 1)^{2}$ = 5 = 0	M1 DM1			any use of $b^2 - 4ac$ for solution of their	quadratic in k
	$k=-\frac{5}{2},$	$\left(\frac{1}{2}\right)$	A1		A1 for	critical value(s), $\frac{1}{2}$	not necessary
	To be below th	the x-axis $k < -\frac{5}{2}$	A1	[4]	A1 for	$k < -\frac{5}{2}$ only	
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ e x-axis, y < 0 $\frac{1}{1} - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$	M1		M1 for	a complete method	l to this point.

Page 4				Syllabus	Paper	
	IGCSE – October/Nov	ember 201	3	0606	11	
3 $\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$		M1	denom	M1 for dealing with the fractions, denominator must be correct, be ge with numerator		
	$=\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$			$f = x pansion and use$ $\theta + \sin^2 \theta = 1$	of	
$=\frac{2(1+)}{\cos\theta(1+)}$	$\frac{\sin\theta}{+\sin\theta}$	DM1	M1 for	r attempt to factoris	e	
$=2 \sec \theta$		A1 [4		obtaining final ans	wer correctly	
$\sec \theta + \tan \theta$ $= \frac{(\sec \theta + \tan \theta)}{\sec \theta}$ $= \frac{\sec^2 \theta + \tan^2 \theta}{\sec^2 \theta}$ $= \frac{2\sec^2 \theta}{\sec^2 \theta}$	Alternative solution: $\sec \theta + \tan \theta + \frac{1}{\sec \theta + \tan \theta}$ $= \frac{(\sec \theta + \tan \theta)^2 + 1}{\sec \theta + \tan \theta}$ $= \frac{\sec^2 \theta + 2 \sec \theta \tan \theta + \tan^2 \theta + 1}{\sec \theta + \tan \theta}$ $= \frac{2 \sec^2 \theta + 2 \sec \theta \tan \theta}{\sec \theta + \tan \theta}$ $= \frac{2 \sec \theta (\sec \theta + \tan \theta)}{\sec \theta + \tan \theta}$		M1 for $\tan^2 \theta$	M1 for dealing with the fractions M1 for expansion and use of $\tan^2 \theta + 1 = \sec^2 \theta$ DM1 for attempt to factorise		
$=2 \sec \theta$		A1	A1 for	obtaining final ans	wer correctly	
4 (i) $n(A) = 3$		B1 [1]	$\operatorname{correct}_{n(A)}$ =	nents listed for (i), t t elements to get B1 = 3. If they are not 1 r given then B1.	leading to	
(ii) n (<i>B</i>) = 4		B1 [1]	correct B1. If	If elements listed for (ii), then they mu correct elements leading to $n(B) = 4$ to B1. If they are not listed and correct an given then B1.		
(iii) $A \cup B = \{$	{60°, 240°, 300, 420°, 600°}	√B1 [1]		Follow through on any sets listed in (i) a (ii). Do not allow any repetitions.		
(iv) $A \cap B = \{$	{60°, 420°}	√B1 [1]		through on any se	ts listed in (i) and	

Page 5	Mark Schem	Mark Scheme			Paper
	IGCSE – October/Nove	ember 2013		0606	11
5 (i) $9x - \frac{1}{3}co$	B1, B1, B1 [3]	B1 for 9x, B1 for $\frac{1}{3}$ or cos3x B1 for $-\frac{1}{3}$ cos3x Condone omission of $+c$			
(ii) $\left[9x - \frac{1}{3}c\right]$	9				
$=\left(9\pi-\frac{1}{3}\right)$	$\left(\pi - \frac{1}{3}\cos\frac{\pi}{3}\right) - \left(\pi - \frac{1}{3}\cos\frac{\pi}{3}\right)$	M1	M1 for to (i)	correct use of lim	its in their answer
$=8\pi+\frac{1}{2}$		A1, A1 [3]	A1 for	each term	
$6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1$	$+\frac{b}{2}-2$	M1	M1 for	substitution of x =	$=\frac{1}{2}$ into f (x)
leading to $a +$	4b - 8 = 0	A1	A1 for	correct equation ir	any form
f(2) = 2f(-1)		M1		attempt to substitute to $f(x)$ and use for $f(x) = f(x)$	
8a + 16 + 2b -	-2 = 2(-a + 4 - b - 2)	A1		a correct equation	in any form
leading to $10a$ $\therefore a = -2, b =$	+4b+10 = 0 or equivalent = $\frac{5}{2}$	DM1 A1 [6]	attempt obtain e	on both previous M to solve simultan either <i>a</i> or <i>b</i> both correct	

Pa	ige 6	Mark Scheme			Syllabus	Paper	
		IGCSE – October/Nove	mber 2	013	0606	11	
7 (a)		60 20	B1 [B1	[1]			
(b)		24	B1	[1] [1]			
	(ii) 2	.8	B1	[1]			
		$924 - ({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$ 924 - 3M 3W - 2M 4W)	M1		for 3 terms, at least 2 ect in terms of <i>C</i> nota		
924 - 224 - 28 = 672			A1 A1		for any pair (must be for final answer	evaluated)	
Or		$^{8}C_{4} \times ^{4}C_{2} = 420$	M1		M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated		
	5M 1W 6M	$C_{8} C_{5} \times^{4} C_{1} = 224$ ${}^{8} C_{6} = 28$	A1	A1	for any pair (must be	evaluated)	
		Total = 672	A1	A1	for final answer		
8 (i)			B1	B1	for correct shape		
			B1	B1	for (-3, 0) or -3 seen	on graph	
			B1	B1	for $(2, 0)$ or 2 seen on	graph	
			B1	B1	for $(0, 6)$ or 6 seen on	graph or in a table	
			[[4]			
(ii)	$\left(-\frac{1}{2},\frac{1}{2}\right)$	$\left(\frac{25}{4}\right)$	B1, B1	[2] B1	for each		
(iii)	$k > \frac{25}{4}$	or $\frac{25}{4} < k \ (\le 14)$	B1 [[1]			

	Page 7	Mark Schem	e		Syllabus	Paper
		IGCSE – October/Nove	ember 2013		0606	11
9	(a) $12x^2\ln(2x^2)$	$2x+1)+4x^3\left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]	M1 for -1 for e	correct product	
	(b) (i) <u>d</u>	$\frac{y}{x} = \frac{(x+2)^{\frac{1}{2}}2 - 2x(x+2)^{-\frac{1}{2}}\frac{1}{2}}{x+2}$	M1, A1		differentiation of a ng $(x+2)^{\frac{1}{2}}$	quotient
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1	A1 all correct unsimplified DM1 for attempt to simplify		
	=	$\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for correct simplification to obtain given answer		
	Or : $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(\frac{1}{2}\right)$	$\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a ng $(x+2)^{-\frac{1}{2}}$	product
	$= (x)$ $= \frac{x}{(x)}$	DM1 A1	DM1 f	correct unsimplified or attempt to simpli correct simplification nswer	fy	
	(ii) $\frac{10x}{\sqrt{x+2}}$	(+ <i>c</i>)	M1,A1 [2]	M1 for A1 cor Condor	$\frac{2x}{\sqrt{x+2}}$ implified.	
	(iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$		M1	M1 for correct application of limits in answer to (b)(ii)		
		$=\frac{40}{3}$	A1 [2]			

Page 8	Mark Schem	е		Syllabus	Paper
	IGCSE – October/Nover			0606	11
10 (i) $\sqrt{20}$ or 4.47		B1 [1]			
(ii) Grad $AB = \frac{1}{2}, \perp \text{grad} = -2$		M1	M1 for	attempt at a perp g	gradient
	y - 4 = -2(x - 1)	M1, A1		attempt at straight e perpendicular and	. .
(y = -2x + x)	+ 6)	[3]	A1 allo	ow unsimplified	
$(x-1)^2 +$	f C (x, y) and BC ² = 20 $(y-4)^2 = 20$ or f C (x, y) and AC ² = 40	M1	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2)		
$(x+3)^2 +$	$(y-2)^2 = 40$	A1		a correct equation	
Need inte	ersection with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only		
leads to 5 $5y^2 - 40y$	$5x^2 - 10x - 15 = 0$ or y - = 0				
	giving $x = 3, -1$ and $y = 0, 8$		M1 for attempt to solve quadratic A1 for each 'pair'		
	vector approach:				
$\overrightarrow{AB} = \begin{pmatrix} 4\\2 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$		B1	May be	e implied	
		M1 A1, A1		• correct approach each element corre	ect
$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$	$+ \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for	each element corre	ect

Page 9	e 9 Mark Scheme		Syllabus	Paper
	IGCSE – October/Nove	mber 2013	0606	11
11 (a) (i) $\begin{pmatrix} 4\\4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]		
(ii) A ²	$\mathbf{P} = \begin{pmatrix} 16 & 9\\ 12 & 13 \end{pmatrix}$	B1, B1 [2]	B1 for any 2 correct elem B1 for all correct	ents
()	s the inverse matrix of \mathbf{A}^2 $\frac{1}{00} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	√B1, √B1 [2]	Follow through on their A	2
(b) det $\mathbf{C} = x_0$ = 2:	$(x-1) - (-1)(x^2 - x + 1)$ $x^2 - 2x + 1$	M1 A1	M1 for attempt to obtain of A1 for this correct quadra from a correct det C	
$b^2 - 4ac <$	< 0, 4 – 8 < 0	DM1	DM1 for use of discrimin solve using the formula, c complete the square in ord are no real roots.	or attempt to
No real so	blutions (so det $\mathbf{C} \neq 0$)	A1 [4]	A1 for correct reasoning of there are no real roots.	or statement that

	Pag	je 10		k Scheme	Syllabus	Paper		
			IGCSE – Octo	ber/November 2013	0606	11		
12	(a)	(i)	f(-10) = 299, f(8) = 191 Min point at (0, -1) or when ∴ range $-1 \le y \le 299$	$m_y = -1 \qquad \begin{array}{c} M1 \\ B1 \\ A1 \end{array}$	M1 for substitution of either $x = -10$ or $x = 8$, may be seen on diagram B1 May be implied from final answer, may be seen on diagram			
		(ii)	range $-1 \le y \le 299$ $x \ge 0$ or equivalent	[3] B1 [1]	Must have \leq for A1, do not allow x Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.			
	(b)	(i)	$g^{-1}(x) = \ln\left(\frac{x+2}{4}\right)$ or $\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	M1 A1 [2]	M1 for complete method inverse function, must in appropriate. May still be A1 must be in terms of x	volve ln or lg if in terms of y .		
		(ii)	$gh(x) = g(1n5x) = 4e^{1n5x} - 2 20x - 2 = 18, x = 1$	M1 A1 A1 [3]	M1 for correct order A1 for correct expression $4e^{1n5x} - 2$ A1 for correct solution from correct working			
			Or $h(x) = g^{-1}(18)$ 1n5x = 1n5 leading to $x = 1$	M1 A1 A1	M1 for correct order A1 for correct equation A1 for correct solution fr working	om correct		