MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

1 (a)		B1	
		B1	
(b)	No.in <i>H</i> only = $50 - x$; No in <i>F</i> only = $60 - x$ Sum: $50 - x + 60 - x + x + 30 - 2x = 98$ x = 14	B1 M1 A1	Both written or on diagram Add at least 3 terms each with <i>x</i> involved and equate to 98 soi
2	$9x^{2} + 2x - 1 < (x + 1)^{2}$ $8x^{2} < 2 \text{ oe isw}$ $-\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1	Expand and collect terms
3	$log_{2}(x+3) = log_{2} y+2 \rightarrow x+3 = 4y$ $log_{2}(x+y) = 3 \rightarrow x+y = 8$ x+3 = 4(8-x) $5x = 29 \rightarrow x = 5.8, \text{ oe}$ y = 2.2 oe	B1 B1 M1 A1 A1	Eliminate y or x from two linear three term equations

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

4 (i)	f(37)=3 or gf(x) = $\frac{\sqrt{x-1}-3-2}{2(\sqrt{x-1}-3)-3}$	B1	
	$gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x-1$	M1	Rearrange and square in any order
	$(x+3)^2 + 1 = f^{-1}(x)$ oe isw	A1	Interchange <i>x</i> and <i>y</i> and complete
(iii)	$y = \frac{x-2}{2x-3}$		
	$2xy - 3y = x - 2 \rightarrow 2xy - x = 3y - 2$	M1	Multiply and collect like terms
	$\frac{3x-2}{2x-1} = g^{-1}(x)$ oe	A1	Interchange and complete Mark final answer
5 (i)	<i>B</i> = 900	B1	
(ii)	$B = 500 + 400e^2 = 3455 \text{ or } 3456 \text{ or } 3460$	B1	3455.6 scores B0
(iii)	$\left(\frac{\mathrm{d}B}{\mathrm{d}t}\right) = 80\mathrm{e}^{0.2t}$	B 1	
	$t = 10 \rightarrow \frac{\mathrm{d}B}{\mathrm{d}t} = 80\mathrm{e}^2 = 591(/\mathrm{day})$	B 1	awrt
(iv)	$10000 = 500 + 400e^{0.2t} \rightarrow e^{0.2t} = (23.75)$	M1	$e^{0.2t} = k$
	$0.2t = \ln 23.75$	DM1	take logs: $0.2t = \ln k$
	$t = 15.8 (\mathrm{days})$	A1	awrt

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

6 (i)	$(x+2)^2 + x^2 = 10$	B1	
	$x^{2} + 2x - 3 = 0 \rightarrow (x + 3)(x - 1) = 0$	M1	3 term quadratic with attempt to solve
	Points (1, 3), (-3, -1) isw	A1 A1	both x or a pair both y or second pair
	or elimination of x leads to $y^2 - 2y - 3 = 0$, then as above	AI	both y of second pair
(ii)	$m^2 x^2 + 10mx + 25 + x^2 = 10$	B1	
	$(m^2 + 1)x^2 + 10mx + 15 = 0$		
	$b^2 - 4ac = (0) \rightarrow 100m^2 - 60(m^2 + 1) = 0$	M1 A1	attempt to use discriminant on three term quadratic. Allow unsimplified
	$m = \pm \sqrt{\frac{3}{2}}$ oe isw	A1	$cao \pm is required$
	Alternative solution:		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$	B1	allow unsimplified
	Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$		
	Attempt to solve with $x^2 + y^2 = 10$	M1	
	$y = 2, x = \pm \sqrt{6}$	A1	Eliminate <i>x</i> or <i>y</i> both
	$m = \pm \frac{3}{\sqrt{6}} \text{ oe}$	A1	
7 (i)	$v = 2\cos t + 1$	B1	mark final answer
(ii)	$2\cos t + 1 = 0$	M1	equate their v to zero (must be a differential) and attempt to solve to find
	$t = \frac{2\pi}{3}$ or 2.09	A1	an angle awrt
(iii)	$t = \frac{2\pi}{3} \rightarrow x = 2\sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} = 3.83 \mathrm{m}$	B1	awrt
	$a = -2\sin t$	B1ft	ft <i>their</i> v (2 nd differential)
	$t = \frac{2\pi}{3}a = -\sqrt{3} = -1.73 \text{ or } -1.74 \text{ ms}^{-2}$	DB1ft	ft using <i>their</i> angle <i>t</i> in correct <i>a</i> awrt
8 (i)	$\frac{dy}{dx} = \frac{(2+x^2) \times 2x - x^2 \times 2x}{(2+x^2)^2} = \frac{4x}{(2+x^2)^2}$	M1 A1	apply quotient or product rule unsimplified
	<i>k</i> = 4	A1	k=4 does not need to be specifically identified
(ii)	$\int \frac{x}{(2+x^2)^2} dx = \frac{1}{4} \times \frac{x^2}{2+x^2} + (c) \text{ isw}$	B1 B1	$\frac{1}{their k}$ × original function

Page				Syllabus	Paper
	Cambridge IGCSE – October/November 2014			0606	22
9	$(a+3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oe	B1	anywhere		
	Equate: $a^2 + a + 45 = 51$	B1			
	and $6a - b = 0$	B 1			
	(a+3)(a-2)=0	M1	Attempt to solve three term quadratic with integer coefficients obtained by equating coeffs Both <i>a</i> s correct or one correct pair Both <i>b</i> s correct		
	a = -3, 2	A1			
	a = -3, 2 b = -18, 12	A1 A1			
10 (i)	$\sec x \csc x = \frac{1}{\cos x \sin x}$	B1	anywhere		
	$\cot x = \frac{\cos x}{\sin x}$	B1	anywhere		
	$LHS = \frac{1 - \cos^2 x}{\cos x \sin x} \text{ oe}$	B1ft	correct addition	of <i>their</i> term	IS
	$=\frac{\sin^2 x}{\cos x \sin x} = \tan x \qquad \text{AG}$	B1	use of identity a	and cancel	
(ii)	$3 \cot x - \cot x = \tan x \rightarrow 2 \cot x = \tan x$	M1	equate and collect like terms, allow si errors		, allow sign
	$\tan^2 x = 2$ oe x = 54.7, 125.3, 234.7, 305.3	A1 A1	2 values		
	x = 54.7, 125.5, 254.7, 505.5	A1 A1	only 2 more val	ues. awrt	
11 (i)	Area of sector = $\frac{1}{2} \times x^2 \times 0.8 \left(= 0.4x^2 \text{ cm}^2\right)$	B1	anywhere		
	$SR = 5\sin 0.8 (= 3.59)$ or	B1	SR may be seen	in stated $\frac{1}{2}a$	ab sin C
	$OR = 5\cos 0.8 \left(= 3.48\right)$			2	
	Area of triangle =				
	$\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247\mathrm{cm}^2$	M1 A1	insert correct te formulae	rms into corr	ect area
	$0.08x^2 = 6.247$	Π	Tormulae		
	$x = 8.837 \mathrm{cm}$ AG	A1			
(ii)	$SQ = 8.84 - 5 (= 3.84 \mathrm{cm})$				
	$PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$	B1	two lengths from	m <i>SQ, PR, P</i> Ç	2 awrt
	$PQ = 8.84 \times 0.8 (= 7.07 \mathrm{cm})$	B1	1 third length awrt		
	Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9	B1	sum		
(iii)	Area $PQSR = 4 \times 6.247$	M1			
	$=25\mathrm{cm}^2$	A1	24.95 to 25		

Page 6	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – October/November 2014			0606	22
12 (i)	$f(2) = 3(2^3) - 14(2^2) + 32 = 0$ Or complete long division	B1			
(ii)	$f(x) = (x-2)(3x^2 - 8x - 16)$ f(x) = (x-2)(x-4)(3x+4)	M1 A1 M1 A1	$3x^2$ and 16 8x and correct signs Factorise three term quadratic		
(iii)	x = 2, 4	B1			
(iv)	$\int 3x - 14 + \frac{32}{x^2} dx = 1.5x^2 - 14x - \frac{32}{x} (+ c)$ Area = $\left[1.5x^2 - 14x - \frac{32}{x} \right]_{2}^{4}$	B1 B1	first 2 terms third term corre	•	
	$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 \\ -1 & 2 \end{vmatrix} = (-) 2$	M1 A1	Limits of 2 and	4 and subtrac	et