MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	2 Mark Scheme		Paper	
	Cambridge IGCSE – October/November 2015	0606	11	

T

Abbreviations

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

1	$kx^{2} + (2k - 8)x + k = 0$ $b^{2} - 4ac > 0 \text{ so } (2k - 8)^{2} - 4k^{2} (>0)$ $4k^{2} - 32k + 64 - 4k^{2} (>0)$	M1 DM1 DM1	for attempt to obtain a 3 term quadratic in the form $ax^2 + bx + c = 0$, where b contains a term in k and a constant for use of $b^2 - 4ac$ for attempt to simplify and solve for k
	leading to $k < 2$ only	A1	A1 must have correct sign
2	$\left(\frac{dy}{dx}\right) = -5x(+c)$ When $x = -1$, $\frac{dy}{dx} = 2$ leading to	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	$\frac{\mathrm{d}x}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} = \dots$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	
	Alternative scheme:		
	$y = ax^{2} + bx + c \text{ so } \frac{dy}{dx} = 2ax + b$ When $x = -1$, $\frac{dy}{dx} = 2$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in <i>a</i> and <i>b</i>
	$\int_{a}^{b} dx$	A1	for a correct equation
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a$	DM1	for a second differentiation to obtain <i>a</i>
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for <i>a</i> , <i>b</i> and <i>c</i> all correct

Mark Scheme Cambridge IGCSE – October/November 2015

SyllabusPaper060611

3	$\sqrt{(\sec^2 \theta - 1)} + \sqrt{(\csc^2 \theta - 1)} = \sec \theta \csc \theta$		
	$LHS = \tan\theta + \cot\theta$	B1	may be implied by the next line
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$	B1	for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$
	$=\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{1}{\sin\theta\cos\theta}$	M1	for the use of $\sin^2 \theta + \cos^2 \theta = 1$ in correct context
	$= \sec\theta\csc\theta$	A1	Must be convinced as AG
	Alternate scheme:		
	LHS = $\tan \theta + \cot \theta$		
	$= \tan \theta + \frac{1}{\tan \theta}$	B1	may be implied by subsequent work
	$=\frac{\tan^2\theta+1}{\tan\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{\sec^2\theta}{\tan\theta}$	B1	for use of the correct identity
	$=\frac{\sec\theta}{\tan\theta}\times\sec\theta$	M1	for 'splitting' $\sec^2 \theta$
	$= \csc\theta \sec\theta$	A1	Must be convinced as AG
4 (a) (i)	28	B1	
(ii)	20160	B1	
(iii)	$6 \times (5 \times 4 \times 3)$ oe to give 360 $6 \times (5 \times 4 \times 3) \times 2$	B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books
	= 720	B1	for the realisation that the above arrangement can be either side of the clock.
(b)	Either ${}^{10}C_6 - {}^7C_6 = 210 - 7$	B1, B1	B1 for ${}^{10}C_6$, B1 for ${}^{7}C_6$
	= 203	B1	
	Or $1W 5M = 63$ 2W 4M = 105	B1	for 1 case correct, must be considering more than 1 different case, allow <i>C</i> notation
	$3W \ 3M = 35$ $Total = 203$	B1 B1	for the other 2 cases, allow <i>C</i> notation for final result

	Page 4			Syllabus Paper		
		Cambridge IGCSE – October/November 2015		2015 0606 11		
	(i)	$\frac{dy}{dx} = (x-3)\frac{4x}{2x^2+1} + \ln(2x^2+1)$ when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oe or 1.31 or better	B1 M1 A1 A1	for correct differentiation of ln function for attempt to differentiate a product for correct product, terms must be bracketed where appropriate for correct final answer		
	(ii)	$\partial y \approx$ (answer to (i)) × 0.03 = 0.0393, allow awrt 0.039	M1 A1FT	for attempt to use small changes follow through on <i>their</i> numerical answer to (i) allow to 2 sf or better		
6	(i)	$A \cap B = \{3\}$	B1			
((ii)	$A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$	B1			
(i	iii)	$A' \cap C = \{1, 5, 7, 11\}$	B1			
(iv)	$(D \cup B)' = \{1, 9\}$	B1			
((v)	Any set containing up to 5 positive even numbers ≤ 12	B1			
7	(i)	Gradient = $\frac{0.2}{0.8} = 0.25$ b = 0.25	M1 A1	for attempt to find the gradient		
		Either $6 = 0.25(2.2) + c$ Or $5.8 = 0.25(1.4) + c$	M1	for a correct substitution of values from either point and attempt to obtain c or solution by simultaneous equations		
		leading to $A = 233$ or $e^{5.45}$	A1	dealing with $c = \ln A$		
		Alternative schemes: Either Or $6 = b(2.2) + c$ $e^{6} = A(e^{2.2})^{b}$ $5.8 = b(1.4) + c$ $e^{5.8} = A(e^{1.4})^{b}$	M1	for 2 simultaneous equations as shown		
		Leading to $A = 233$ or $e^{5.45}$ and $b = 0.25$	DM1 A1, A1	for attempt to solve to get at least one solution for one unknown A1 for each		
	(ii)	Either $y = 233 \times 5^{0.25}$ Or $\ln y = 0.25 \ln 5 + \ln 233$	M1	for correct use of either equation in attempt to obtain y using <i>their</i> value of A and of b found in (i)		
		leading to $y = 348$	A1			

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2015060611

8	$\frac{dy}{dx} = \frac{2(x^2+5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}(2x-1)}{x^2+5}$ or $\frac{dy}{dx} = 2(x^2+5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}(2x-1)$	B1 M1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified
		A1	for an correct, anow unsimplified
	When $x = 2$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$ (allow 0.444 or 0.44)	B1, B1	B1 for each
	Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$	M1	for attempt at straight line, must be tangent
	,	111	for attempt at straight line, must be tangent using <i>their</i> gradient and y
	(9y = 4x + 1)	A1	allow unsimplified.
9 (i)	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$
			only Condone omission of <i>c</i>
(ii)	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$	M1	for attempt to find the area of the trapezium
	=12.5	A1	
	Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5} - \left(\frac{1}{2} \times 5 \times 5\right)$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$=\left(\frac{2}{3}\times27\right)-\frac{16}{3}-\frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
	$=\frac{1}{\epsilon}$ or awrt 0.17	A1	
	0		
	Alternative scheme:		
	Equation of $AB y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of AB
	Area = $\int_{0}^{6} \sqrt{4 + x} - \left(\frac{1}{5}x + 2\right) dx$ = $\left[\frac{2}{3}(4 + x)^{\frac{3}{2}} - \frac{x^{2}}{10} - 2x\right]_{0}^{5}$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$\begin{bmatrix} -\begin{bmatrix} 3 & -\begin{bmatrix} -\end{bmatrix} & 10 \end{bmatrix}_{0}$		
	$=\left(\frac{2}{3}\times 27\right)-\frac{16}{3}-\frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
		A1	for 12.5 or equivalent
	$=\frac{1}{6}$ or awrt 0.17	A1	
	, in the second s		

[Page 6				Syllabus	Paper	
		Cambridge IGCSE – October/November 2015				11	
10	(i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing	vincing argument		
(i	ii)	Angle $CBE = \frac{2\pi}{3}$	B1	must be in terms of π , allow 0.667 π , or better			
(ii	ii)	$DE = 10\sqrt{3}$	M1	for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>			
			A1	for correct <i>DE</i> ,	allow 17.3 or	r better	
		Arc $CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to fi CBE (20.94)	ttempt to find arc length with <i>their</i> and (20.94)		
		Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	for $10 + 10 + D$.	E + an arc less	ngth	
		= 58.3 or 58.2	A1	allow unsimplified			
(i		Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1	for sector area using <i>their</i> angle <i>CBE</i> allo unsimplified, may be implied		0	
		Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area using <i>their</i> angle <i>DBE</i> whimust be the same as <i>their</i> angle <i>CBE</i> , allow unsimplified, may be implied allow in either form			
		Area $=\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148	A1				

Page	age 7 Mark Scheme		Syllabus Paper			
		Cambridge IGCSE – October/No	vember	2015 0606 11		
11 (a) (i	i)	$(x+3)^2 - 5$	B1, B1	B1 for 3, B1 for – 5		
(ii	i)	$y \ge 4 \text{ or } f \ge 4$	B1	Correct notation or statement must be used		
(iii	i)	$y = \sqrt{x+5} - 3$	M1	for a correct attempt to find the inverse function		
		Domain $x \ge 4$	A1 B1FT	must be in the correct form and positive root only Follow through on <i>their</i> answer to (ii), must be using x		
(b)		$h^2g(x) = h^2(e^x)$	M1	for correct order		
		$=h(5e^x+2)$	M1	for dealing with h^2		
		$= 25e^{x} + 12$				
		$25e^{x} + 12 = 37,$	DM1	for solution of equation (dependent on both previous M marks)		
		leading to $x = 0$	A1			
		Alternative scheme 1:				
		$hg(x) = h^{-1}(37)$	M1	for correct order		
		$h^{-1}(37) = 7$	M1	for dealing with $h^{-1}(37)$		
		$5e^x + 2 = 7,$	DM1	for solution of equation (dependent on both		
		leading to $x = 0$	A1	previous M marks)		
		Alternative scheme 2:				
		$g(x) = h^{-2}(37)$	M1	for correct order		
		$h^{-2}(37) = 1$	M1	for dealing with $h^{-2}(37)$		
		$e^x = 1$,	DM1	for solution of equation (dependent on both		
		leading to $x = 0$	A1	previous M marks)		

	Page 8	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October/November 2015				11	
12		$x^{2} + 6x - 16 = 0$ or $y^{2} + 10y - 75 = 0$ leading to	M1	for attempt to obt terms of one varia	to obtain a 3 term quadratic in e variable only to solve quadratic equation		
		(x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	DM1				
		so $x = 2$, $y = 5$ and $x = -8$, $y = -15$	A1, A1	A1 for each 'pair	of values.		
		Midpoint $(-3, -5)$	B1				
		Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$ Perpendicular bisector:					
		$y + 5 = -\frac{1}{2}(x + 3)$	M1	for attempt at stra using midpoint ar	<u> </u>		
		(2y + x + 13 = 0)	M1	for use of $y = 0$ i		•	
		Point <i>C</i> (–13, 0)		(but not $2x - y + 1 = 0$)		1	
		Area $=\frac{1}{2}\begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$ = 125	M1 A1	for correct attemp <i>their</i> values for <i>A</i> <i>x</i> -axis)			
		Alternative method for area: $CM^2 = 125, AB^2 = 500$ Area $= \frac{1}{2} \times \sqrt{125} \times \sqrt{500}$	M1	for correct attemp <i>their</i> values for A		ea may be using	
		= 125	A1				