MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

1	$k x^{2}+(2 k-8) x+k=0$ $\begin{aligned} & b^{2}-4 a c>0 \text { so }(2 k-8)^{2}-4 k^{2}(>0) \\ & 4 k^{2}-32 k+64-4 k^{2}(>0) \end{aligned}$ leading to $k<2$ only	M1 DM1 DM1 A1	for attempt to obtain a 3 term quadratic in the form $a x^{2}+b x+c=0$, where b contains a term in k and a constant for use of $b^{2}-4 a c$ for attempt to simplify and solve for k A1 must have correct sign
2	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=-5 x(+c)$ When $x=-1, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$ leading to $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-5 x-3 \\ & y=-\frac{5 x^{2}}{2}-3 x+d \end{aligned}$ When $x=-1, y=3$ leading to $y=\frac{5}{2}-\frac{5 x^{2}}{2}-3 x$ Alternative scheme: $y=a x^{2}+b x+c \text { so } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 a x+b$ When $x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$ so $-2 a+b=2$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 a$ so $a=-\frac{5}{2}, b=-3, c=\frac{5}{2}$	M1 A1 DM1 A1 M1 A1 DM1 A1	for attempt to integrate, do not penalise omission of arbitrary constant. Must have $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ for attempt to integrate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, but penalise omission of arbitrary constant. for use of $y=a x^{2}+b x+c$, differentiation and use of conditions to give an equation in a and b for a correct equation for a second differentiation to obtain a for a, b and c all correct

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

3	$\begin{aligned} \sqrt{\left(\sec ^{2} \theta-1\right)}+\sqrt{\left(\operatorname{cosec}^{2} \theta-1\right)}=\sec \theta \operatorname{cosec} \theta \\ \begin{aligned} \text { LHS } & =\tan \theta+\cot \theta \\ & =\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\ & =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta} \\ & =\frac{1}{\sin \theta \cos \theta} \\ & =\sec \theta \operatorname{cosec} \theta \end{aligned} \end{aligned}$ Alternate scheme: $\begin{aligned} \text { LHS } & =\tan \theta+\cot \theta \\ & =\tan \theta+\frac{1}{\tan \theta} \\ & =\frac{\tan ^{2} \theta+1}{\tan \theta} \\ & =\frac{\sec ^{2} \theta}{\tan \theta} \\ & =\frac{\sec \theta}{\tan \theta} \times \sec \theta \\ & =\operatorname{cosec} \theta \sec \theta \end{aligned}$	B1 B1 M1 M1 A1 B1 M1 B1 M1 A1	may be implied by the next line for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$ for attempt to obtain as a single fraction for the use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ in correct context Must be convinced as AG may be implied by subsequent work for attempt to obtain as a single fraction for use of the correct identity for 'splitting' $\sec ^{2} \theta$ Must be convinced as AG
$4 \quad$ (a) (i) (ii) (iii) (b)		B1 B1 B1 B1 B1, B1 B1 B1 B1 B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books for the realisation that the above arrangement can be either side of the clock. B1 for ${ }^{10} C_{6}, \mathrm{~B} 1$ for ${ }^{7} C_{6}$ for 1 case correct, must be considering more than 1 different case, allow C notation for the other 2 cases, allow C notation for final result

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-3) \frac{4 x}{2 x^{2}+1}+\ln \left(2 x^{2}+1\right)$ when $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{8}{9}+\ln 9$ oe or 1.31 or better $\begin{aligned} & \partial y \approx(\text { answer to }(\mathbf{i})) \times 0.03 \\ & =0.0393, \text { allow awrt } 0.039 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1FT } \end{gathered}$	for correct differentiation of \ln function for attempt to differentiate a product for correct product, terms must be bracketed where appropriate for correct final answer for attempt to use small changes follow through on their numerical answer to (i) allow to 2 sf or better
6 (i) (ii) (iii) (iv) (v)	$\begin{aligned} & A \cap B=\{3\} \\ & A \cup C=\{1,3,5,6,7,9,11,12\} \\ & A^{\prime} \cap C=\{1,5,7,11\} \\ & (D \cup B)^{\prime}=\{1,9\} \end{aligned}$ Any set containing up to 5 positive even numbers $\leqslant 12$	B1 B1 B1 B1 B1	
$7 \begin{array}{ll}7 & \text { (i) } \\ & \\ & \\ & \\ \\ & \\ \text { (ii) }\end{array}$	$\begin{aligned} \text { Gradient } & =\frac{0.2}{0.8}=0.25 \\ b & =0.25 \end{aligned}$ Either $\quad 6=0.25(2.2)+c$ Or $\quad 5.8=0.25(1.4)+c$ leading to $A=233$ or $\mathrm{e}^{5.45}$ Alternative schemes: $\begin{array}{ll} \text { Either } & \text { Or } \\ 6=b(2.2)+c & \mathrm{e}^{6}=A\left(\mathrm{e}^{2.2}\right)^{b} \\ 5.8=b(1.4)+c & \mathrm{e}^{5.8}=A\left(\mathrm{e}^{1.4}\right)^{b} \end{array}$ Leading to $A=233$ or $\mathrm{e}^{5.45}$ and $b=0.25$ Either $\quad y=233 \times 5^{0.25}$ Or $\quad \ln y=0.25 \ln 5+\ln 233$ leading to $y=348$	M1 A1 M1 A1 M1 DM1 A1, A1 M1 A1	for attempt to find the gradient for a correct substitution of values from either point and attempt to obtain c or solution by simultaneous equations dealing with $c=\ln A$ for 2 simultaneous equations as shown for attempt to solve to get at least one solution for one unknown A1 for each for correct use of either equation in attempt to obtain y using their value of A and of b found in (i)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

8	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2\left(x^{2}+5\right)^{\frac{1}{2}}-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{1}{2}}(2 x-1)}{x^{2}+5}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=2\left(x^{2}+5\right)^{-\frac{1}{2}}-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{3}{2}}(2 x-1)$ When $x=2, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{9}$ (allow 0.444 or 0.44) Equation of tangent: $y-1=\frac{4}{9}(x-2)$ $(9 y=4 x+1)$	B1 M1 A1 B1, B1 M1 A1	for $\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified B1 for each for attempt at straight line, must be tangent using their gradient and y allow unsimplified.
9 (i) (ii)	$\begin{aligned} & \begin{array}{l} \frac{2}{3}(4+x)^{\frac{3}{2}}(+c) \\ \text { Area of trapezium } \end{array}=\left(\frac{1}{2} \times 5 \times 5\right) \\ & =12.5 \\ & \begin{aligned} & \text { Area }=\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5}-\left(\frac{1}{2} \times 5 \times 5\right) \\ &=\left(\frac{2}{3} \times 27\right)-\frac{16}{3}-\frac{25}{2} \\ &=\frac{1}{6} \text { or awrt } 0.17 \end{aligned} \end{aligned}$ Alternative scheme: Equation of $A B \quad y=\frac{1}{5} x+2$ $\begin{aligned} \text { Area } & =\int_{0}^{5} \sqrt{4+x}-\left(\frac{1}{5} x+2\right) \mathrm{d} x \\ & =\left[\frac{2}{3}(4+x)^{\frac{3}{2}}-\frac{x^{2}}{10}-2 x\right]_{0}^{5} \\ & =\left(\frac{2}{3} \times 27\right)-\frac{16}{3}-\frac{25}{2} \\ & =\frac{1}{6} \text { or awrt } 0.17 \end{aligned}$		B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$ only Condone omission of c for attempt to find the area of the trapezium for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18-\frac{16}{3}$ or equivalent for a correct attempt to find the equation of $A B$ for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18-\frac{16}{3}$ or equivalent for 12.5 or equivalent

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

10 (i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing argument
(ii)	$\text { Angle } C B E=\frac{2 \pi}{3}$	B1	must be in terms of π, allow 0.667π, or better
(iii)	$D E=10 \sqrt{3}$	M1 A1	for correct attempt to find $D E$ using their angle CBE for correct $D E$, allow 17.3 or better
	Arc $C E=10 \times \frac{2 \pi}{3}$	M1	for attempt to find arc length with their angle CBE (20.94)
	$\text { Perimeter }=20+10 \sqrt{3}+\frac{20 \pi}{3}$	M1	for $10+10+D E+$ an arc length
	$=58.3$ or 58.2	A1	allow unsimplified
(iv)	Area of sector: $\frac{1}{2} \times 10^{2} \times \frac{2 \pi}{3}=\frac{100 \pi}{3}$	M1	for sector area using their angle $C B E$ allow unsimplified, may be implied
	Area of triangle: $\frac{1}{2} \times 10^{2} \times \sin \frac{2 \pi}{3}=25 \sqrt{3}$	M1	for triangle area using their angle $D B E$ which must be the same as their angle $C B E$, allow unsimplified, may be implied
	Area $=\frac{100 \pi}{3}+25 \sqrt{3}$ or awrt 148	A1	allow in either form

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

12	$x^{2}+6 x-16=0 \text { or } y^{2}+10 y-75=0$ leading to $(x+8)(x-2)=0 \text { or }(y-5)(y+15)=0$ so $x=2, y=5$ and $x=-8, y=-15$ Midpoint (-3,-5) Gradient $=2$, so perpendicular gradient $=-\frac{1}{2}$ Perpendicular bisector: $\begin{aligned} & y+5=-\frac{1}{2}(x+3) \\ & (2 y+x+13=0) \end{aligned}$ Point $C(-13,0)$ Area $=\frac{1}{2}\left\|\begin{array}{cccc}-13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0\end{array}\right\|$ $=125$ Alternative method for area: $\begin{aligned} C M^{2} & =125, A B^{2}=500 \\ \text { Area } & =\frac{1}{2} \times \sqrt{125} \times \sqrt{500} \\ & =125 \end{aligned}$		for attempt to obtain a 3 term quadratic in terms of one variable only for attempt to solve quadratic equation A1 for each 'pair' of values. for attempt at straight line equation, must be using midpoint and perpendicular gradient for use of $y=0$ in their line equation (but not $2 x-y+1=0$) for correct attempt to find area, may be using their values for A, B and C (C must lie on the x-axis) for correct attempt to find area may be using their values for A, B and C

