MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2 , maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	23

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

1	$\begin{aligned} & y=x^{3}+3 x^{2}-5 x-7 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}+6 x-5 \\ & x=2 \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=19 \\ & y=3 \end{aligned}$ eqn of tangent: $\frac{y-3}{x-2}=19 \rightarrow(y=19 x-35)$	M1 A1 A1FT B1 A1FT	Differentiate on their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
2	$\begin{aligned} & 2 x+k+2=2 x^{2}+(k+2) x+8 \\ & 2 x^{2}+k x+6-k \quad(=0) \\ & b^{2}-4 a c=k^{2}-4 \times 2(6-k) \\ & k^{2}+8 k-48 \quad(>0) \\ & (k+12)(k-4) \quad(>0) \\ & k<-12 \text { or } k>4 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	eliminate y or x correct quadratic use discriminant attempt to solve 3 term quadratic $k=-12$ and $k=4$
3 (a) (b)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(2-x^{2}\right) 3 x^{2}-x^{3}(-2 x)}{\left(2-x^{2}\right)^{2}}=\left(\frac{6 x^{2}-x^{4}}{\left(2-x^{2}\right)^{2}}\right) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=x \times \frac{1}{2}(4 x+6)^{-0.5} \times 4+(4 x+6)^{0.5} \\ & =\frac{6(x+1)}{(4 x+6)^{0.5}} \rightarrow k=6 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A2,1,0 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	For quotient rule (or product rule on correct y) product rule
4	$\begin{aligned} & x(4-\sqrt{3})=13 \\ & x=\frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})} \\ & =4+\sqrt{3} \\ & y=1-2 \sqrt{3} \end{aligned}$	M1 A1 M1 A1 A1	eliminate y or x simplified rationalisation

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	23

5	$\begin{aligned} & (x-3)(x-3)(x-1)=0 \\ & x^{3}-7 x^{2}+15 x-9=0 \\ & a=-7 \\ & b=15 \\ & c=-9 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	AG for c
6	$\begin{aligned} & \log _{x} 2=\frac{\log _{2} 2}{\log _{2} x} \\ & 2 \log _{2} x=\log _{2} x^{2} \\ & 3=\log _{2} 8 \\ & 8 x^{2}-29 x+15(=0) \\ & \quad \rightarrow(8 x-5)(x-3)(=0) \\ & x=\frac{5}{8} \text { or } x=3 \end{aligned}$	B1 B1 B1 M1 A1	obtain quadratic and attempt to solve
$7 \quad$ (i) (ii) (iii) (iv)	$\begin{aligned} & a=-\frac{20}{(t+2)^{3}} \\ & t=3 \rightarrow a=-0.16 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ $\frac{10}{(t+2)^{2}}$ is never zero. $s=-\frac{10}{t+2}+5$ $\begin{aligned} s & =\left[-\frac{10}{t+2}\right]_{3}^{8}=-1+2 \\ & =1 \end{aligned}$	M1 A1 A1FT B1 M1 A1 A1 M1 A1	$\begin{aligned} & k(t+2)^{-3} \text { oe } \\ & k=-20 \end{aligned}$ integrate $\frac{k}{t+2}$ $k=-10$ $+5$ insert limits and subtract

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	23

8 (i) (ii)	$\left.\begin{array}{rl} \begin{array}{rl} \sec ^{2} x+\operatorname{cosec}^{2} x & = \\ \cos ^{2} x \end{array} \frac{1}{\sin ^{2} x} \\ & =\frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} \\ & =\frac{1}{\sin ^{2} x \cos ^{2} x} \\ & =\sec ^{2} x \operatorname{cosec}^{2} x \end{array}\right] \begin{aligned} & \frac{1}{\cos ^{2} x \sin ^{2} x}=4 \frac{\sin ^{2} x}{\cos ^{2} x} \\ & \rightarrow 4 \sin ^{2} x=1 \end{aligned} \quad \begin{aligned} & \sin x= \pm \frac{1}{\sqrt{2}} \\ & x=135^{\circ}, 225^{\circ} \end{aligned}$	B1 B1 B1 B1 M1 A1 A1, A1	add fractions use of $\sin ^{2} x+\cos ^{2} x=1$ fully correct solution correct simplified equation
9 (i) (ii) (iii)	$\begin{aligned} & \mathrm{f}(x)=3 x^{2}+12 x+2=3(x+2)^{2}-10 \\ & a=3 \\ & b=2 \\ & c=-10 \\ & \text { minimum } \mathrm{f}(x)=-10 \\ & \text { at } x=-2 \\ & \mathrm{f}\left(\frac{1}{y}\right)=0 \rightarrow\left(\frac{1}{y}\right)=(\pm) \sqrt{\frac{10}{3}}-2 \\ & y=-5.74, \quad-0.26 \end{aligned}$	B1 B1 B1 B1FT B1FT M1 A1, A1	obtain explicit expression for $\frac{1}{y}$ or y

12	$\begin{aligned} & v_{p}=\binom{250 \cos 20^{\circ}}{250 \sin 20^{\circ}}, v_{r}=\binom{V \cos 30^{\circ}}{V \sin 30^{\circ}}, v_{w}=\binom{0}{w} \\ & v_{r}=v_{p}+v_{w} \\ & \binom{V \cos 30^{\circ}}{V \sin 30^{\circ}}=\binom{250 \cos 20^{\circ}}{250 \sin 20^{\circ}}+\binom{0}{w} \\ & V=\frac{250 \cos 20^{\circ}}{\cos 30^{\circ}} \\ & =271 \mathrm{~km} / \mathrm{hr} \\ & \begin{aligned} & w=V \sin 30^{\circ}-250 \sin 20^{\circ} \\ &=50.1 \mathrm{~km} / \mathrm{hr} \\ & \text { OR triangle with sides } \quad 250 \quad V \\ & \text { opposite angles } \\ & \text { sine rule: } \frac{w}{\sin 10^{\circ}}=\frac{250}{\sin 60^{\circ}} \\ & w=50.1 \mathrm{~km} / \mathrm{hr} \end{aligned} \\ & \begin{array}{l} \frac{V}{\sin 110^{\circ}}=\frac{250}{\sin 60^{\circ}} \\ V=271 \mathrm{~km} / \mathrm{hr} \end{array} \end{aligned}$	B1 M1 A1 M1 A1 B1 M1 A1 M1 A1	equate x components and solve equate y components and solve apply to correct triangle and solve apply to correct triangle and solve

