MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	23

Abbreviations

awrt	answers which round to
cao	correct answer only
1	Analanah

- depdependentFTfollow through after error
- isw ignore subsequent working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied
- www without wrong working

1	$y = x^{3} + 3x^{2} - 5x - 7$ $\frac{dy}{dx} = 3x^{2} + 6x - 5$ $x = 2 \rightarrow \frac{dy}{dx} = 19$ $y = 3$ eqn of tangent: $\frac{y - 3}{x - 2} = 19 \rightarrow (y = 19x - 35)$	M1 A1 A1FT B1 A1FT	Differentiate on <i>their</i> $\frac{dy}{dx}$
2	$2x + k + 2 = 2x^2 + (k+2)x + 8$	M1	eliminate y or x
	$2x^2 + kx + 6 - k (=0)$	A1	correct quadratic
	$b^{2} - 4ac = k^{2} - 4 \times 2(6 - k)$	M1	use discriminant
	$k^{2} + 8k - 48$ (> 0) (k + 12)(k - 4) (> 0) k < -12 or k > 4	DM1 A1 A1	attempt to solve 3 term quadratic $k = -12$ and $k = 4$
3 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(2-x^2)3x^2 - x^3(-2x)}{(2-x^2)^2} = \left(\frac{6x^2 - x^4}{(2-x^2)^2}\right)$	M1 A2,1,0	For quotient rule (or product rule on correct <i>y</i>)
(b)	$\frac{dy}{dx} = x \times \frac{1}{2} (4x+6)^{-0.5} \times 4 + (4x+6)^{0.5}$ $= \frac{6(x+1)}{(4x+6)^{0.5}} \rightarrow k = 6$	M1 A1 A1	product rule
4	$(4x+6)^{33}$ $x(4-\sqrt{3}) = 13$ $x = \frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$ $= 4+\sqrt{3}$ $y = 1-2\sqrt{3}$	M1 A1 M1 A1 A1	eliminate <i>y</i> or <i>x</i> simplified rationalisation

Page 3	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – October/Nover	nber 201	5 0606 23
5	(x-3)(x-3)(x-1) = 0 x ³ - 7x ² + 15x - 9 = 0	M1	
	a = -7	A1	
	<i>b</i> = 15	A1	
	<i>c</i> = -9	A1	AG for <i>c</i>
6	$\log_x 2 = \frac{\log_2 2}{\log_2 x}$	B1	
	$2\log_2 x = \log_2 x^2$	B1	
	$3 = \log_2 8$	B1	
	$8x^2 - 29x + 15 \ (=0)$	M1	obtain quadratic and attempt to solve
	$\rightarrow (8x-5)(x-3) \ (=0)$		
	$x = \frac{5}{8}$ or $x = 3$	A1	
7 (i)	$a = -\frac{20}{\left(t+2\right)^3}$	M1 A1	$k(t+2)^{-3}$ oe k = -20
	$t = 3 \rightarrow a = -0.16 \text{ m/s}^2$	A1FT	
(ii)	$\frac{10}{(t+2)^2}$ is never zero.	B1	
(iii)	$s = -\frac{10}{t+2} + 5$	M1	integrate $\frac{k}{t+2}$
	T+2	A1	$\begin{array}{c} t+2\\ k=-10 \end{array}$
		A1	+5
(iv)	$s = \left[-\frac{10}{t+2}\right]_3^8 = -1+2$	M1	insert limits and subtract
	=1	A1	

Page 4	Mark Scheme				Paper
	Cambridge IGCSE – October/Nover	mber 201	5	0606	23
8 (i)	$\sec^{2} x + \csc^{2} x = \frac{1}{\cos^{2} x} + \frac{1}{\sin^{2} x}$	B1			
	$=\frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}$	B1	add fraction	ns	
	$=\frac{1}{\sin^2 x \cos^2 x}$	B1	use of sin ²	$x + \cos^2 x = 1$	
(;;)	$= \sec^2 x \csc^2 x$	B1	fully correc	et solution	
(ii)	$\frac{1}{\cos^2 x \sin^2 x} = 4 \frac{\sin^2 x}{\cos^2 x}$	M1			
	$\rightarrow 4\sin^2 x = 1$ $\sin x = \pm \frac{1}{\sqrt{2}}$	A1	correct sim	plified equati	on
	$\sqrt{2}$ $x = 135^{\circ}, 225^{\circ}$	A1, A1			
9 (i)	$f(x) = 3x^{2} + 12x + 2 = 3(x+2)^{2} - 10$ a = 3 b = 2 c = -10	B1 B1 B1			
(ii)	minimum $f(x) = -10$ at $x = -2$	B1FT B1FT			
(iii)	$f\left(\frac{1}{y}\right) = 0 \rightarrow \left(\frac{1}{y}\right) = (\pm)\sqrt{\frac{10}{3}} - 2$	M1	obtain expl	icit expressio	In for $\frac{1}{y}$ or y
	y = -5.74, -0.26	A1, A1			

Page 5	Mark Scheme Syllabus Paper				
	Cambridge IGCSE – October/Nover	5 0606 23			
10 (i)	$\frac{d}{dx}(e^{2-x^2}) = -2xe^{2-x^2}$	B1	<i>k</i> = -2		
(ii)	$-\frac{3e^{2-x^2}}{2}+c$	M1	De^{2-x^2} $D = \frac{-3}{2} \text{ or } \frac{3}{k}$		
		A1FT	$D = \frac{1}{2}$ or $\frac{1}{k}$		
(iii)	$\begin{bmatrix} -\frac{3e^{2-x^2}}{2} \end{bmatrix}_{1}^{\sqrt{2}} = -\frac{3}{2} + \frac{3}{2}e$ 2.58	M1	insert limits on <i>their</i> (ii) and subtract		
	2.58	A1			
(iv)	$y = 3xe^{2-x^2}$	M1 A1	product rule		
	$\frac{dy}{dx} = 3x(-2xe^{2-x^2}) + 3e^{2-x^2}$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \rightarrow x = \pm \frac{1}{\sqrt{2}} = \pm 0.707$	A1	both x or a pair		
	$\begin{bmatrix} -\frac{3e^{2-x^2}}{2} \end{bmatrix}_{1}^{\sqrt{2}} = -\frac{3}{2} + \frac{3}{2}e$ 2.58 $y = 3xe^{2-x^2}$ $\frac{dy}{dx} = 3x(-2xe^{2-x^2}) + 3e^{2-x^2}$ $\frac{dy}{dx} = 0 \rightarrow \qquad x = \pm \frac{1}{\sqrt{2}} = \pm 0.707$ $y = \pm \frac{3}{\sqrt{2}}e^{1.5} = \pm 9.51$ $\log N = \log A - t \log b$	A1	both <i>y</i>		
11 (i)	$\log N = \log A - t \log b$	B1			
(ii)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 M1	find logs of N plot log N or ln N against t or $-t$		
		A1	straight line passing through five points		
(iii)	gradient = $-\log b = \frac{2.415 - 3.3}{5} \rightarrow b = 1.5$	DM1	set gradient = $-\log b$ and solve		
	intercept = $\log A = 3.47 \rightarrow A = 2950$	DM1 A1	set intercept = $\log A$ and solve both values correct		
(iv)	$t = 10 \rightarrow N = \frac{2950}{1.5^{10}} = 51$	B1			
(v)	$N = 10 \rightarrow 1.5^{t} = 295 \rightarrow t = \frac{\log 295}{\log 1.5}$	M1	substitute $N = 10$, their A, b into given or transformed equation		
	= 14 years	A1			

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	23

12	$v_{p} = \begin{pmatrix} 250\cos 20^{\circ} \\ 250\sin 20^{\circ} \end{pmatrix}, v_{r} = \begin{pmatrix} V\cos 30^{\circ} \\ V\sin 30^{\circ} \end{pmatrix}, v_{w} = \begin{pmatrix} 0 \\ w \end{pmatrix}$	B1	
	$ v_r = v_p + v_w $ $ \begin{pmatrix} V\cos 30^\circ \\ V\sin 30^\circ \end{pmatrix} = \begin{pmatrix} 250\cos 20^\circ \\ 250\sin 20^\circ \end{pmatrix} + \begin{pmatrix} 0 \\ w \end{pmatrix} $		
	$V = \frac{250\cos 20^{\circ}}{\cos 30^{\circ}}$ $= 271 \text{km/hr}$	M1 A1	equate x components and solve
	$w = V \sin 30^\circ - 250 \sin 20^\circ$ $= 50.1 \text{ km/hr}$	M1 A1	equate y components and solve
	OR triangle with sides $250 V w$ opposite angles $60^{\circ} 110^{\circ} 10^{\circ}$	B1	
	sine rule: $\frac{w}{\sin 10^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $w = 50.1 \text{ km/hr}$	M1 A1	apply to correct triangle and solve
	$\frac{V}{\sin 110^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $V = 271 \text{ km/hr}$	M1 A1	apply to correct triangle and solve