Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/21
Paper 2
October/November 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	21

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Part Marks
1	$\begin{aligned} & 4 x-3=x \rightarrow x=1 \\ & 4 x-3=-x \\ & x=0.6 \end{aligned}$ $\begin{aligned} & \text { OR }(4 x-3)^{2}=x^{2} \\ & 15 x^{2}-24 x+9=0 \\ & 3(x-1)(5 x-3)=0 \\ & x=1 \text { and } x=0.6 \end{aligned}$	B1 M1 A1 B1 M1 A1	www use of $-x$ or $-(4 x-3)$ but not both. solve correct 3 term quadratic www
2	$\begin{aligned} & a(\sqrt{3}-1)+b(\sqrt{3}+1) \\ & =(\sqrt{3}-3)(\sqrt{3}-1)(\sqrt{3}+1) \\ & =2(\sqrt{3}-3) \text { oe } \\ & a+b=2 \\ & -a+b=-6 \end{aligned}$ $b=-2 \text { and } a=4$	M1 DM1 A1 DM1 A1	Common denominator or $\times(\sqrt{3}-1)(\sqrt{3}+1)$ equate constant terms and $\sqrt{3}$ terms. both correct solve two linear equations to obtain $a=$ or $b=$ both correct
3	$\begin{aligned} & 2 \lg x=\lg x^{2} \\ & 1=\lg 10 \\ & \lg x^{2}-\lg \left(\frac{x+10}{2}\right)=\lg \left(\frac{2 x^{2}}{x+10}\right) \text { oe } \\ & 2 x^{2}-10 x-100=0 \rightarrow 2(x+5)(x-10)=0 \\ & x=10 \text { only } \end{aligned}$	B1 B1 B1 M1 A1	soi anywhere soi anywhere soi division; logs may be removed obtain correct 3 term quadratic equation and attempt to solve $x=-5$ must not remain.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	21

Question	Answer	Marks	Part Marks
$4 \quad$ (i) (ii) (iii)	$\begin{aligned} & t=10 \rightarrow N=7000+2000 \mathrm{e}^{-0.5} \\ & =8213 \text { or } 8210 \\ & N=7500 \rightarrow 7500=7000+2000 \mathrm{e}^{-0.05 t} \\ & \mathrm{e}^{-0.05 t}=\frac{500}{2000} \\ & -0.05 t=\ln 0.25 \rightarrow t=\frac{\ln 0.25}{-0.05} \\ & =27.7 \text { (days) } \\ & \frac{\mathrm{d} N}{\mathrm{~d} t}=-100 \mathrm{e}^{-0.05 t} \\ & t=8 \rightarrow \frac{\mathrm{~d} N}{\mathrm{~d} t}= \pm 67 \quad(.0) \end{aligned}$	B1 M1 M1 A1 M1 A1 A1	Do not accept non integer responses. insert and make $\mathrm{e}^{-0.05 \mathrm{t}}$ subject take logs and make t the subject awrt 27.7 $k \mathrm{e}^{-0.05 t}$ where k is a constant $k=-100$ or -0.05×2000 awrt ± 67 mark final answer
5 (i) (ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+4 x-7 \\ & x=-2 \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=12-8-7=-3 \end{aligned}$ Equation of tangent : $\frac{y-16}{x+2}=-3 \rightarrow y=-3 x+10$ Tangent cuts curve again $\begin{aligned} & x^{3}+2 x^{2}-7 x+2=-3 x+10 \\ & x^{3}+2 x^{2}-4 x-8=0 \\ & (x+2)(x+2)(x-2)=0 \\ & x=2, \quad y=4 \end{aligned}$	B1 M1 A1 M1 A1 M1 A1A1	insert $x=-2$ into their gradient and use $(-2,16)$ and their gradient of tangent in equation of line. equate curve and their linear answer from (i). factorise: $(x \pm 2)$ and a two or three term quadratic is sufficient. Allow long division withhold final A1 if $(2,4)$ not clearly identified as their sole answer.
6 (i) (ii)	$\begin{aligned} & \frac{\cos x}{1+\tan x}-\frac{\sin x}{1+\cot x}=\frac{\cos x}{1+\frac{\sin x}{\cos x}}-\frac{\sin x}{1+\frac{\cos x}{\sin x}} \\ & =\frac{\cos ^{2} x}{\cos x+\sin x}-\frac{\sin ^{2} x}{\cos x+\sin x} \\ & =\frac{(\cos x-\sin x)(\cos x+\sin x)}{(\cos x+\sin x)} \\ & -\sin x+\cos x=3 \sin x-4 \cos x \\ & 5 \cos x=4 \sin x \\ & \tan x=\frac{5}{4} \\ & x=51.3^{\circ},-128.7^{\circ} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1A1 } \end{gathered}$	$\tan x=\frac{\sin x}{\cos x} \text { and } \cot x=\frac{\cos x}{\sin x}$ Attempt to multiply by $\cos x$ and $\sin x$ AG equate and collect $\sin x$ and $\cos x$ oe FT from $\tan x=k$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	21

Question	Answer	Marks	Part Marks
$7 \quad \text { (i) }$ (ii)	$\begin{aligned} & h=\sqrt{9-x^{2}} \\ & A=\frac{\sqrt{9-x^{2}}}{2}(14+x+x)=\sqrt{9-x^{2}}(7+x) \\ & \frac{\mathrm{d} A}{\mathrm{~d} x}=\sqrt{9-x^{2}}+(7+x) \frac{1}{2}\left(9-x^{2}\right)^{-0.5} \times-2 x \\ & \frac{\mathrm{~d} A}{\mathrm{~d} x}=0 \rightarrow 9-x^{2}=7 x+x^{2} \\ & 2 x^{2}+7 x-9=0 \\ & x=1 \\ & A=16 \sqrt{2} \text { or } 8 \sqrt{8} \text { or } \sqrt{512} \text { or } 22.6 \end{aligned}$	B2/1/0 M1 A2/1/0 M1 A1 A1 A1	Must be clear that $\sqrt{9-x^{2}}$ is the height of the trapezium. $14+2 x$ oe must be seen AG product rule on correct function minus 1 each error , allow unsimplified. equate to 0 and simplify to a linear or quadratic equation. correct three term quadratic obtained Extra positive answer loses penultimate A1. ignore negative solution.
(i) (ii) (iii)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\frac{\left(x^{3}+1\right) 9 x^{2}-\left(3 x^{3}-1\right) 3 x^{2}}{\left(x^{3}+1\right)^{2}} \\ & =\frac{12 x^{2}}{\left(x^{3}+1\right)^{2}} \\ & \begin{aligned} \int_{1}^{2} \frac{x^{2}}{\left(x^{3}+1\right)^{2}} \mathrm{~d} x & =\frac{1}{12}\left[\frac{3 x^{3}-1}{x^{3}+1}\right]_{1}^{2} \end{aligned} \\ & \quad=\frac{1}{12}\left[\frac{23}{9}-\frac{2}{2}\right] \\ & \quad=\frac{7}{54} \end{aligned} x_{x=\frac{3 y^{3}-1}{y^{3}+1}}^{y^{3}=\frac{x+1}{3-x}} \begin{aligned} & \mathrm{f}^{-1}(x)=\sqrt[3]{\frac{x+1}{3-x}} \end{aligned}$ Domain : $-1 \leqslant x \leqslant 2 \frac{6}{7}$	M1 A1 A1 M1 A1 DM1 A1 B1 B1 B1 B1	quotient rule or product rule all correct www beware $9 x^{6}-9 x^{6}$ gets A0 $c \times \frac{3 x^{3}-1}{x^{3}+1}$ FT $c=\frac{1}{\text { their } 12}$ top limit - bottom limit in their integral. or 0.130 or 0.1296 or 0.12 make y^{3} or x^{3} the subject FT take cube root (as long as y^{3} or x^{3} equals a fraction with terms in x or y only) oe FT change x and y - can be done at any time Allow upper limit of 2.86 . Do not isw

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	21

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	21

Question	Answer	Marks	Part Marks
10 (i) (ii)	$\begin{aligned} & r_{j}=\binom{5000}{1000 p}+\binom{-2 \cos 40}{2 \cos 50} t \\ & 2.5 t \cos 70=5000-2 t \cos 40 \\ & t=\frac{5000}{2.5 \cos 70+2 \cos 40} \\ & =2095 \text { awrt or } 2090 \text { or } 2100 \\ & (2.5 \cos 20-2 \cos 50) \times 2095=1000 p \\ & p=2.23 \text { awrt } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	x coordinate oe y coordinate oe equate their x values (must be 3 terms) make t the subject allow one sign error equate their y values(must be 3 terms) and insert their t or $\|t\|$.
11 (i) (ii) (iii)	Free choice : no. of ways $\begin{aligned} & { }^{6} C_{4} \times{ }^{5} C_{2}=15 \times 10 \\ & =150 \end{aligned}$ Both Mr and Mrs Coldicott $\begin{aligned} & { }^{5} C_{3} \times{ }^{4} C_{1}=10 \times 4 \\ & =40 \end{aligned}$ MrC and not Mrs C ${ }^{5} C_{3} \times{ }^{4} C_{2}(=60)$ Not Mr C and Mrs C ${ }^{5} C_{4} \times{ }^{4} C_{1}(=20)$ Total $=80$ OR Total $=$ (i) - (ii) - neither Neither $={ }^{5} C_{4} \times{ }^{4} C_{2}=30$ Total $=150-40-30=80$	B1 M1 A1 A1	${ }^{6} C_{4} \times$ another ${ }^{n} C_{r}$ term only $\times{ }^{5} C_{2}$ and answer or vice versa ${ }^{5} C_{3} \times$ another ${ }^{n} C_{r}$ term only $\times{ }^{4} C_{1}$ and answer or vice versa An incorrect final answer does not affect the awarding of the first two $\mathbf{B 1}$ marks. www

