

ADDITIONAL MATHEMATICS

0606/23 October/November 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
\overline{FT}	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Mark	Part Marks
1	$\frac{\left(\sqrt{5}+3\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)} \times \frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)}$	M1	rationalise with $(\sqrt{5} - \sqrt{3})$
	$=\frac{5+3\sqrt{15}-\sqrt{15}-9}{5-3}$	A1	numerator (3 or 4 terms)
	$=\frac{2\sqrt{15}-4}{2}=\sqrt{15}-2$	A1	denominator and completion
2	$lne^{3x} = ln6e^{x}$ $3x = ln6e^{x}$ $3x = ln6 + lne^{x}$ 3x = ln6 + x	M1 M1	one law of indices/logs second law of indices/logs
	$x = \frac{1}{2} \ln 6 \text{ or } \ln \sqrt{6} \text{ or } 0.896$	A1	www oe in base 10
3 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\sin x}{1+\cos x}\right) = \frac{(1+\cos x)\cos x + \sin x \sin x}{\left(1+\cos x\right)^2}$	M1 A1	Quotient Rule (or Product Rule from $(\sin x)(1 + \cos x)^{-1}$) correct unsimplified
	$= \frac{\cos x + \cos^2 x + \sin^2 x}{\left(1 + \cos x\right)^2}$	B1	use of $\sin^2 x + \cos^2 x = 1$ oe
	$=\frac{1+\cos x}{\left(1+\cos x\right)^2}$	A1	completion
(ii)	$\int_0^2 \left(\frac{1}{1+\cos x}\right) dx = \left[\frac{\sin x}{1+\cos x}\right]_0^2$	M1	correct integrand
	awrt 1.56	A1	

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060623

Que	stion	Answer	Mark	Part Marks
4	(i)	$p(2) = 0 \rightarrow 8 + 4a + 2b - 24 = 0$	B1	
		$\rightarrow (4a+2b=16)$		
		$p(1) = -20 \rightarrow 1 + a + b - 24 = -20$	B 1	
		$\rightarrow (a+b=3)$	N/I	solve their linear equations for a or h
		a = 5 and $b = -2$	M1 A1	solve <i>their</i> linear equations for <i>a</i> or <i>b</i>
((ii)	$p(x) = x^3 + 5x^2 - 2x - 24$	M1	find quadratic factor
		$=(x-2)(x^2+7x+12)$	A1	correct quadratic factor soi
		=(x-2)(x+3)(x+4)	M1	factorise quadratic factor and write as product of 3 linear factors
		$p(x) = 0 \rightarrow x = 2, -3, -4.$	A1	if 0 scored, SC2 for roots only
5	(i)	$AB^{2} = \left(\sqrt{3} + 1\right)^{2} + \left(\sqrt{3} - 1\right)^{2}$	M1	use cosine rule
		$-2(\sqrt{3}+1)(\sqrt{3}-1)\cos 60$		
		$= 3 + 1 + 2\sqrt{3} + 3 + 1 - 2\sqrt{3} - 2$ = 6	A1 A1	at least 7 terms correct completion AG
((ii)	$\frac{\sin A}{\sqrt{3}-1} = \frac{\sin 60}{\sqrt{6}}$	M1	sine rule (or cosine rule)
		$\sin A = \frac{\left(\sqrt{3} - 1\right)\sin 60}{\sqrt{6}} = \frac{\sqrt{6} - \sqrt{2}}{4} \text{ oe or } 0.259$ or 0.2588	A1	correct explicit expression for sinA AG
(i	iii)	Area = $\frac{1}{2}(\sqrt{3}+1)(\sqrt{3}-1)\sin 60$	M1	correct substitution into $\frac{1}{2}ab\sin C$
		$=\frac{\sqrt{3}}{2}$	A1	
6	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x$	B1	
		$x = \frac{\pi}{4} \to \frac{dy}{dx} = \sec^2 \frac{\pi}{4} = 2$	B 1	evaluated
		$\begin{array}{ccc} 4 & dx & 4 \\ y = 8 \end{array}$	B 1	
		Equation of tangent $\frac{y-8}{x-\frac{\pi}{4}} = 2$	B 1	
		I		
		$(4 - 2y = \pi - 16, y = 2x + 6.429,$		
		$\frac{\pi}{4} = 0.7853)$		

 Page 4
 Mark Scheme
 Sylla

 Cambridge IGCSE – October/November 2016
 06

SyllabusPaper060623

Question	Answer	Mark	Part Marks
(ii)	$sec^{2}x = tanx + 7$ $tan^{2}x - tan x - 6 = 0 \text{ oe}$ (tanx - 3)(tanx + 2) = 0 tan x = 3 or tan x = -2 x = 1.25, 2.03	M1 M1 A1A1	use $\sec^2 x = 1 + \tan^2 x$ to obtain a 3 term quadratic in $\tan x$ solve three term quadratic for $\tan x$ extras in range lose final A1
7 (i)	$r^{2} + h^{2} = (0.5h + 2)^{2}$ oe $r^{2} = 0.25h^{2} + 2h + 4 - h^{2}$ $r^{2} = 2h + 4 - 0.75h^{2}$	M1 A1	correct expansion and r^2 subject and completion www AG
(ii)	$V = \frac{1}{3}\pi r^{2}h = \frac{\pi}{3}(2h^{2} + 4h - 0.75h^{3})$ $\frac{dV}{dh} = \frac{\pi}{3}(4h + 4 - 2.25h^{2})$ $\frac{dv}{dh} = 0 \rightarrow 2.25h^{2} - 4h - 4 = 0$ $h = 2.49 \text{ only}$	B1 M1 A1 M1 A1	any correct form in terms of h only differentiate V correct differentiation equate to 0 and solve 3 term quadratic cao
(iii)	$\frac{d^2 V}{dh^2} = \frac{\pi}{3} (4 - 4.5h) \text{ when } h = 2.49$ (-7.545) < 0 so maximum	M1 A1	differentiate <i>their</i> 3 term $\frac{dV}{dh}$ and substitute <i>their h</i> draw correct conclusion www
8 (i) (ii)	$\cos TOA = \frac{6}{10} \rightarrow$ TOA = 0.927 area of major sector = $\frac{1}{2}6^{2} (2\pi - 2 \times their 0.927) \qquad (= 79.7)$ area of half kite = $\frac{1}{2}(6)\sqrt{10^{2} - 6^{2}} \qquad (= 24)$	M1 A1 M2 M1	any method or M1 for $\frac{1}{2}$ 6 ² (2 × <i>their</i> 0.927) DM1 for $\pi \times 6^2 - \frac{1}{2}$ 6 ² (2 × <i>their</i> 0.927)
(iii)	area of kite × 2 (=48) complete correct plan awrt 128 arc length = $6 \times (2\pi - 2 \times their 0.927) + 2 \times \sqrt{10^2 - 6^2}$) awrt 42.6	DM1 DM1 A1 M1 A1	any method <i>their</i> major sector + <i>their</i> kite complete correct method

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
9 (i)	<i>p</i> = 4	B1	
(ii)	$\tan \alpha = \pm \frac{1}{3}$ or ± 3 or 18.4° or 71.6° seen 108	M1 A1	could use cos or sin
	$\boldsymbol{r}_{A} = \begin{pmatrix} 1\\ 5 \end{pmatrix} + t \begin{pmatrix} their \ p\\ -3 \end{pmatrix}$	B1	
	$\boldsymbol{r}_{\boldsymbol{B}} = \begin{pmatrix} q \\ -15 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	B1	
(v)	5 - 3t = -15 - t $\rightarrow t = 10$	M1 A1	$r_A = r_B$ and equate y/j and solve for t
(vi)	$\begin{pmatrix} 41 \\ -25 \end{pmatrix}$ only	B 1	
(vii)	q = 11 only	B1	
10 (i)	$\mathrm{fg}(x) = \ln(2\mathrm{e}^x + 3) + 2$	B1	isw
(ii)	$\mathrm{ff}(x) = \ln(\ln x + 2) + 2$	B1	isw
(iii)	$x = 2e^{y} + 3$	M1	change x and y and make e^{y} the subject
	$e^{y} = \frac{x-3}{2}$ $g^{-1}(x) = \ln\left(\frac{x-3}{2}\right)$ oe	A1	
(iv)	e ² or 7.39	B1	
(v)	$gf(x) = 2e^{(\ln x+2)} + 3 = 20$	B1	gf correct and equation set up correctly
	$2e^{\ln x}e^2 + 3 = 20$ $2xe^2 = 17$	M1 M1	one law of indices/logs second law of indices/logs
	$x = \frac{17}{2e^2}$ or 1.15	A1	www if 0 scored, SC2 for 17.3

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
11 (i)	$\mathbf{A}^{2} = \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} = \begin{pmatrix} 4+pq & 2q+3q \\ 2p+3p & pq+9 \end{pmatrix}$	B2,1,0	-1 each error
	$\mathbf{A}^2 - 5\mathbf{A} = 2\mathbf{I} \rightarrow 4 + pq - 10 = 2$ or $9 + pq - 15 = 2$	M1	equate top left or bottom right elements
	$\rightarrow pq = 8$	A1	accept $p = \frac{8}{q}, q = \frac{8}{p}$
(ii)	$\det \mathbf{A} = 6 - pq$	B1	
	6 - pq = -3p and solve	M1	<i>their</i> det $\mathbf{A} = -3p$ and use <i>their</i> $pq = k$ oe to solve for p or q
	$ p = \frac{2}{3} $ $ q = 12 $	A1	
	q = 12	A1	FT from <i>their</i> $pq = k$