Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23
Paper 2
October/November 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	23

Abbreviations

awrt	answers which round to
cao	correct answer only dep dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Mark	Part Marks
1	$\begin{aligned} & \frac{(\sqrt{5}+3 \sqrt{3})}{(\sqrt{5}+\sqrt{3})} \times \frac{(\sqrt{5}-\sqrt{3})}{(\sqrt{5}-\sqrt{3})} \\ & =\frac{5+3 \sqrt{15}-\sqrt{15}-9}{5-3} \\ & =\frac{2 \sqrt{15}-4}{2}=\sqrt{15}-2 \end{aligned}$	M1 A1 A1	rationalise with $(\sqrt{5}-\sqrt{3})$ numerator (3 or 4 terms) denominator and completion
2	$\begin{aligned} & \ln \mathrm{e}^{3 x}=\ln 6 \mathrm{e}^{x} \\ & 3 x=\ln 6 \mathrm{e}^{x} \\ & 3 x=\ln 6+\ln \mathrm{e}^{x} \\ & 3 x=\ln 6+x \\ & x=\frac{1}{2} \ln 6 \text { or } \ln \sqrt{6} \text { or } 0.896 \end{aligned}$	M1 M1 A1	one law of indices/logs second law of indices/logs www oe in base 10
3 (i) (ii)	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sin x}{1+\cos x}\right)=\frac{(1+\cos x) \cos x+\sin x \sin x}{(1+\cos x)^{2}} \\ & =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \\ & =\frac{1+\cos x}{(1+\cos x)^{2}} \\ & \int_{0}^{2}\left(\frac{1}{1+\cos x}\right) \mathrm{d} x=\left[\frac{\sin x}{1+\cos x}\right]_{0}^{2} \end{aligned}$ awrt 1.56	M1 A1 B1 A1 M1 A1	Quotient Rule (or Product Rule from $\left.(\sin x)(1+\cos x)^{-1}\right)$ correct unsimplified use of $\sin ^{2} x+\cos ^{2} x=1$ oe completion correct integrand

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	23

Question	Answer	Mark	Part Marks
4 (i) (ii)	$\begin{aligned} & \mathrm{p}(2)=0 \rightarrow 8+4 a+2 b-24=0 \\ & \rightarrow(4 a+2 b=16) \\ & \mathrm{p}(1)=-20 \rightarrow 1+a+b-24=-20 \\ & \rightarrow(a+b=3) \\ & a=5 \mathrm{and} b=-2 \\ & \mathrm{p}(x)=x^{3}+5 x^{2}-2 x-24 \\ & =(x-2)\left(x^{2}+7 x+12\right) \\ & =(x-2)(x+3)(x+4) \\ & \mathrm{p}(x)=0 \rightarrow x=2,-3,-4 . \end{aligned}$	B1 B1 M1 A1 M1 A1 M1 A1	solve their linear equations for a or b find quadratic factor correct quadratic factor soi factorise quadratic factor and write as product of 3 linear factors if 0 scored, SC2 for roots only
5 (i) (ii) (iii)	$\begin{aligned} & A B^{2}=(\sqrt{3}+1)^{2}+(\sqrt{3}-1)^{2} \\ & \quad-2(\sqrt{3}+1)(\sqrt{3}-1) \cos 60 \end{aligned} \begin{aligned} =3+1+2 \sqrt{3}+3+1-2 \sqrt{3}-2 \\ =6 \end{aligned} \quad \begin{aligned} \frac{\sin A}{\sqrt{3}-1}=\frac{\sin 60}{\sqrt{6}} \\ \sin A=\frac{(\sqrt{3}-1) \sin 60}{\sqrt{6}}=\frac{\sqrt{6}-\sqrt{2}}{4} \text { oe or } 0.259 \\ \text { or } 0.2588 \ldots \end{aligned}$ $\text { Area }=\frac{1}{2}(\sqrt{3}+1)(\sqrt{3}-1) \sin 60$ $=\frac{\sqrt{3}}{2}$	M1 A1 A1 M1 A1 M1 A1	use cosine rule at least 7 terms correct completion AG sine rule (or cosine rule) correct explicit expression for $\sin A \mathrm{AG}$ correct substitution into $\frac{1}{2} a b \sin C$
6 (i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\sec ^{2} x \\ & x=\frac{\pi}{4} \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sec ^{2} \frac{\pi}{4}=2 \\ & y=8 \end{aligned}$ Equation of tangent $\frac{y-8}{x-\frac{\pi}{4}}=2$ $\begin{aligned} (4-2 y=\pi-16, y & =2 x+6.429 \ldots \\ \frac{\pi}{4} & =0.7853 \ldots) \end{aligned}$	B1 B1 B1 B1	evaluated

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	23

Question	Answer	Mark	Part Marks
(ii)	$\begin{aligned} & \sec ^{2} x=\tan x+7 \\ & \tan ^{2} x-\tan x-6=0 \text { oe } \\ & (\tan x-3)(\tan x+2)=0 \\ & \tan x=3 \text { or } \tan x=-2 \\ & x=1.25, \quad 2.03 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1A1 } \end{gathered}$	use $\sec ^{2} x=1+\tan ^{2} x$ to obtain a 3 term quadratic in $\tan x$ solve three term quadratic for $\tan x$ extras in range lose final A1
$7 \quad$ (i) (ii) (iii)	$\begin{aligned} & r^{2}+h^{2}=(0.5 h+2)^{2} \text { oe } \\ & r^{2}=0.25 h^{2}+2 h+4-h^{2} \\ & r^{2}=2 h+4-0.75 h^{2} \\ & V=\frac{1}{3} \pi r^{2} h=\frac{\pi}{3}\left(2 h^{2}+4 h-0.75 h^{3}\right) \\ & \frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{\pi}{3}\left(4 h+4-2.25 h^{2}\right) \\ & \frac{\mathrm{d} v}{\mathrm{~d} h}=0 \rightarrow 2.25 h^{2}-4 h-4=0 \\ & h=2.49 \text { only } \\ & \frac{\mathrm{d}^{2} V}{\mathrm{~d} h^{2}}=\frac{\pi}{3}(4-4.5 h) \text { when } h=2.49 \\ & (-7.545 \ldots)<0 \text { so maximum } \end{aligned}$	M1 A1 B1 M1 A1 M1 A1 M1 A1	correct expansion and r^{2} subject and completion www AG any correct form in terms of h only differentiate V correct differentiation equate to 0 and solve 3 term quadratic cao differentiate their 3 term $\frac{\mathrm{d} V}{\mathrm{~d} h}$ and substitute their h draw correct conclusion www
8 (i) (ii) (iii)	$\begin{aligned} & \cos T O A=\frac{6}{10} \rightarrow \\ & T O A=0.927 \end{aligned}$ area of major sector $=$ $\begin{equation*} \frac{1}{2} 6^{2}(2 \pi-2 \times \text { their } 0.927) \tag{=79.7} \end{equation*}$ area of half kite $=\frac{1}{2}(6) \sqrt{10^{2}-6^{2}}$ area of kite $\times 2 \quad(=48)$ complete correct plan awrt 128 arc length $=$ $\left.6 \times(2 \pi-2 \times \text { their } 0.927)+2 \times \sqrt{10^{2}-6^{2}}\right)$ awrt 42.6	$\begin{gather*} \text { M1 } \tag{=24}\\ \text { A1 } \\ \text { M2 } \\ \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gather*}$	any method or M1for $\frac{1}{2} 6^{2}(2 \times$ their 0.927$)$ DM1 for $\pi \times 6^{2}-\frac{1}{2} 6^{2}(2 \times$ their 0.927$)$ any method their major sector + their kite complete correct method

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	23

Question	Answer	Mark	Part Marks
9 (i)	$p=4$	B1	
(ii)	$\begin{aligned} & \tan \alpha= \pm \frac{1}{3} \text { or } \pm 3 \text { or } 18.4^{\circ} \text { or } 71.6^{\circ} \text { seen } \\ & 108 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	could use cos or sin
(iii)	$\boldsymbol{r}_{A}=\binom{1}{5}+t\binom{\text { their } p}{-3}$	B1	
(iv)	$\boldsymbol{r}_{B}=\binom{q}{-15}+t\binom{3}{-1}$	B1	
(v)	$\begin{aligned} & 5-3 t=-15-t \\ & \rightarrow t=10 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\boldsymbol{r}_{A}=\boldsymbol{r}_{B}$ and equate y / \mathbf{j} and solve for t
(vi)	$\binom{41}{-25}$ only	B1	
(vii)	$q=11$ only	B1	
10 (i)	$\mathrm{fg}(x)=\ln \left(2 \mathrm{e}^{x}+3\right)+2$	B1	isw
(ii)	$\mathrm{ff}(x)=\ln (\ln x+2)+2$	B1	isw
(iii)	$\begin{aligned} x & =2 \mathrm{e}^{y}+3 \\ \mathrm{e}^{\mathrm{y}} & =\frac{x-3}{2} \end{aligned}$	M1	change x and y and make e^{y} the subject
	$\mathrm{g}^{-1}(x)=\ln \left(\frac{x-3}{2}\right) \text { oe }$	A1	
(iv)	e^{2} or 7.39	B1	
(v)	$\mathrm{gf}(x)=2 \mathrm{e}^{(\ln x+2)}+3=20$	B1	gf correct and equation set up correctly
	$2 \mathrm{e}^{\ln x} \mathrm{e}^{2}+3=20$	M1	one law of indices/logs
	$2 \mathrm{xe}^{2}=17$	M1	second law of indices/logs
	$x=\frac{17}{2 \mathrm{e}^{2}} \text { or } 1.15$	A1	www if 0 scored, SC2 for 17.3...

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	23

Question	Answer	Mark	Part Marks
11 (i)	$\mathbf{A}^{2}=\left(\begin{array}{ll} 2 & q \\ p & 3 \end{array}\right)\left(\begin{array}{ll} 2 & q \\ p & 3 \end{array}\right)=\left(\begin{array}{cc} 4+p q & 2 q+3 q \\ 2 p+3 p & p q+9 \end{array}\right)$	B2,1,0	-1 each error
(ii)	$\begin{aligned} & \mathbf{A}^{2}-5 \mathbf{A}=2 \mathbf{I} \rightarrow 4+p q-10=2 \\ & \text { or } 9+p q-15=2 \\ & \rightarrow p q=8 \end{aligned}$	M1 A1	equate top left or bottom right elements $\text { accept } p=\frac{8}{q}, \quad q=\frac{8}{p}$
	$\operatorname{det} \mathbf{A}=6-p q$	B1	
	$6-p q=-3 p$ and solve	M1	their $\operatorname{det} \mathbf{A}=-3 p$ and use their $p q=k$ oe to solve for p or q
	$\rightarrow p=\frac{2}{3}$	A1	
	$q=12$	A1	FT from their $p q=k$

