

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
* 5 7	BIOLOGY		0610/62
93	Paper 6 Alterna	tive to Practical	May/June 2012
5 0			1 hour
~	Candidates ans	swer on the Question Paper	
	No Additional M	laterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
Total	

This document consists of 9 printed pages and 3 blank pages.

1 Apple tissue changes colour in the air. Apple cells are thought to contain an enzyme which is a catalyst for the reaction:

For Examiner's Use

colourless compounds + oxygen in the air enzyme coloured compounds

Some students investigated this reaction.

The students cut a slice of apple with a knife as shown in Fig. 1.1.

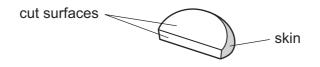


Fig. 1.1

This slice was broken into two pieces as shown in Fig. 1.2.

broken surface

cut surface

Fig. 1.2

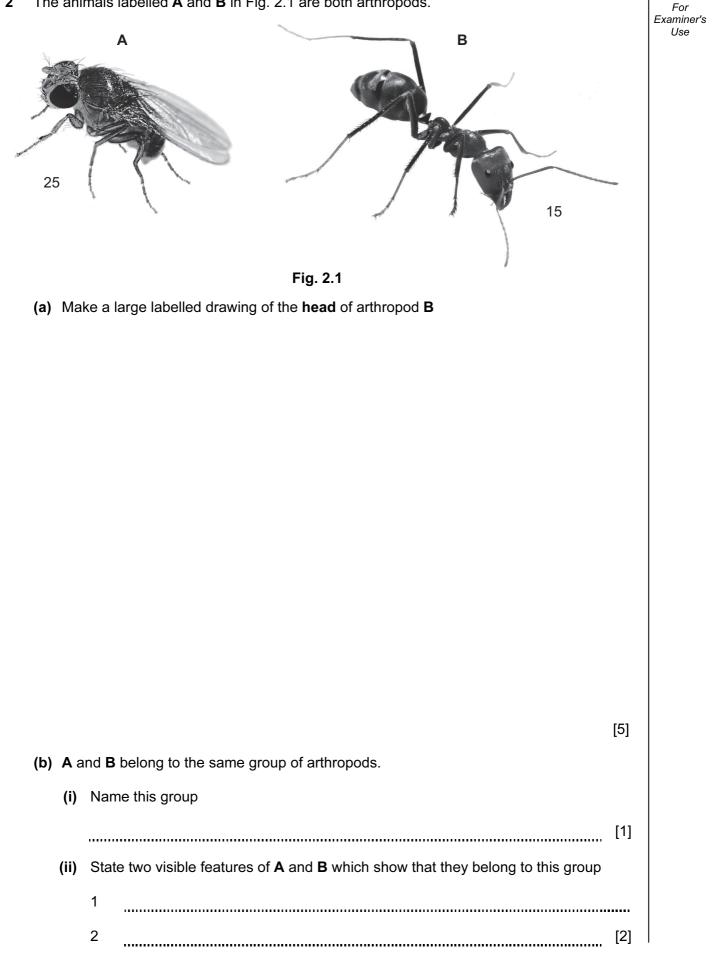
Each piece was put into a different dish. The dishes were labelled 1 and 2.

A few drops of water were put on the cut surface and the broken surface of the piece of apple in dish **1**.

A few drops of lemon juice were put on the cut surface and the broken surface of the piece of apple in dish **2**.

Every five minutes for 20 minutes the students observed the pieces of apple and recorded their observations in Table 1.1.

time /	dish 1 , apple with water		dish 2 , apple with lemon juice		
minutes	broken surface	cut surface	broken surface	cut surface	
5	no change	very light brown	no change	no change	
10	no change	light brown	no change	no change	
15	very light brown	light brown with dark brown patches	no change	no change	
20	light brown	dark brown	no change	no change	
(a) State t	he meaning of this	colour change.			
• •	at Table 1.1. Des e s in dish 1 and di			e appearance of	the cut
(c) The co	olour changes are t	hought to involve	enzyme activity.		
	xplain how the obs atement.	ervations in Table	e 1.1 and your de	scription in (b) sup	oport this
					[3]


Table 1.1

3

(ii) Using your knowledge of enzyme activity, describe another experiment that would test the idea that enzymes are involved in this colour change.

		[3]
(-N	<i>(</i> 1)	Last at Table 4.4. Describe the differences between the second second states building
(d)	(1)	Look at Table 1.1. Describe the differences between the appearance of the broken
		surface and the cut surface in dish 1 during the experiment.
		[2]
	(ii)	Cutting the apple with a knife damages cells, releasing the contents.
		Suggest, from the observations in Table 1.1 and your description in (d)(i), how
		breaking instead of cutting the apple may affect the cells.
		F 4 1
		[1]
		[Total: 11]

2 The animals labelled **A** and **B** in Fig. 2.1 are both arthropods.

(c) Fig 2.2 shows a trap which can be used to catch other insects such as fruit flies.

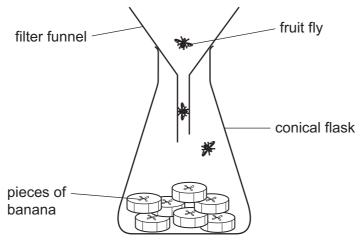


Fig. 2.2

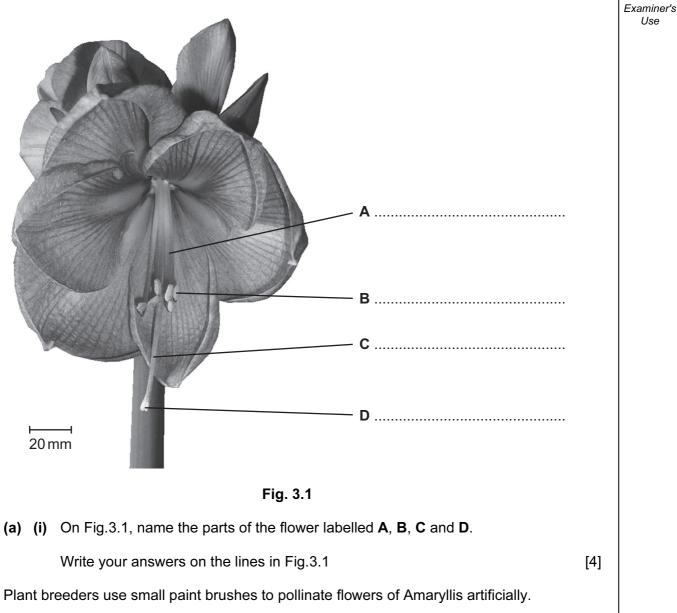
(i) Fruit flies feed on fruits such as bananas. Bananas contain carbohydrates.

Describe how you could safely test a piece of banana for **two** different carbohydrates.

	[6]
(ii)	Describe the observations expected if these two carbohydrates are present.
	[2]

(d) Fig. 2.3 shows a banana and a similar fruit called a plantain.

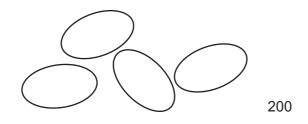
Suggest an investigation to find out if fruit flies are more likely to feed on banana or plantain.


[3]

[Total: 19]

For

Use


3 Fig. 3.1 is a photograph of the flower of Amaryllis, *Hippeastrum aglaiae*.

(ii) State the letter of the part from which the pollen is taken.

[1] (iii) State the letter of the part on which the pollen is put. [1] (iv) State one visible feature in Fig. 3.1 which shows that this flower is usually pollinated by insects.[1]

Fig 3.2 shows four pollen grains from an Amaryllis flower.

Fig. 3.

Length of pollen grain _____mm

Calculate the actual length of the pollen grain that you measured in mm.

Show your working.

© UCLES 2012

actual length of pollen grain _____ mm [3]

[Total: 10]

BLANK PAGE

BLANK PAGE

BLANK PAGE

12

Copyright Acknowledgements:

Question 2 Figure 2.1A Photograph Question 2 Figure 2.1B Photograph Question 2d Figure 2.3 Photograph Question 3a Figure 3.1 Photograph

- © Drosophila melanogaster; http://www.thekitchen.com.
- © Iridomyrmex purpureus; http://en.wikipedia.org/wiki/Meat_ant.
- Banana and a plantain; <u>http://www.grabemsnacks.com/what-is-a-plantain.html</u>.
 Olive Ford © UCLES.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.