MARK SCHEME for the October/November 2014 series

0610 BIOLOGY

0610/61
Paper 6 (Alternative to Practical), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

Abbreviations used in the Mark Scheme

- ;
- /
- R
- I
- A
- AW
- underline
- max
separates marking points
separates alternatives within a marking point
reject
ignore (mark as if this material was not present)
accept (a less than ideal answer which should be marked correct) alternative wording (accept other ways of expressing the same idea) words underlined (or grammatical variants of them) must be present indicates the maximum number of marks that can be awarded when there are more marking points listed.
- mark independently the second mark may be given even if the first mark is wrong
- A, S, P, L
- O, S, D, L
- (n)ecf wrong response.)
- ()
- ora
- AVP

Axes, Size, Plots and Line for graphs
Outline, Size, Detail and Label for drawings
(no) error carried forward (credit a correct operation from a previous the word / phrase in brackets is not required, but sets the context. or reverse argument.
Any valid point

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

	Answer	Marks	Guidance for Examiners			
1 (a)	table drawn with (ruled) lines and cells; headings correct (time, volume and (syringe) 1, 2, 3); units correct in both headings; results recorded in table;;; (1 mark per column completed)	6	A any orientation, outer border not needed \mathbf{R} units within the table			
				volume/cm ${ }^{3}$		
				$\begin{aligned} & \text { (syringe) } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { (syringe) } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { (syringe) } \\ & 3 \end{aligned}$
			0			
			5			
			10			
			15			
			20			
(b) (i)	to make the results more reliable/to find anomalies/to calculate an average;	1				
(ii)	syringe 2 (reading at $15 \mathrm{~min} / 20 \mathrm{~min}$) much lower than others/ syringes 1 and 3 are similar;	1				
(iii)	16;	1	$(18+12$	$19=49$,	$9 / 3=16.3$	$3=16)$
(c) (i)	30	1	(35-5			

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

(ii)		A - axes labelled and scaled evenly; S - size, P - all points plotted accurately $\pm 1 / 2$ small square;		enly $\pm 1 / 2$ 40 30	squ 50 42	60 25		4	x-axis: temperature $/{ }^{\circ} \mathrm{C}$ y-axis: average increase in volume $/ \mathrm{cm}^{3}$ I orientation plots to fill half, or more than half, of grid along both axes $P=0$ if no scale A ecf (d)(i) A ecf of correct plots on an uneven scale if plot average volume and not average increase in volume $=\max 3$ A either best fit or point to point, ruled lines or smooth curve Rextrapolation $>1 / 2$ small square \mathbf{R} histogram or bar chart
(iii)	as the temperature increases the (average) increase in volume increases to a peak/up to $50^{\circ} \mathrm{C}$; up to $50^{\circ} \mathrm{C}$ the (average) increase in volume starts slowly, then increases; above $50^{\circ} \mathrm{C}$ the (average increase in) volume slows/increases less/decreases;							$\max 2$	A trend- as temperature increases, volume increases then decreases $=\max 1$ A non-linear/changes gradient \mathbf{R} volume decreases A ecf for wrong optimum temperature

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

(iv)	yeast activity increases with temperature up to $50^{\circ} \mathrm{C} ;$ optimum temperature is $50^{\circ} \mathrm{C} ;$ (some of) yeast is killed /enzymes become denatured above $50^{\circ} \mathrm{C} ;$	max 1	R yeast is denatured/enzyme is killed
		[Total: 17]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

2 (a) (i)	drawing of leaf R (monocot): \mathbf{O} - outline is single clear line (and no shading anywhere); S - drawing occupies at least half of the space provided; D - detail at least mid-rib and 3 veins each side; L - label on midrib;	4	wrong leaf drawn $=\max 3(\mathrm{O}, \mathrm{S}$ and L$)$ occupies at least half of the space provided/ leaf longer than 50 mm \mathbf{R} if drawing touches/extends into printed words minimum 7 lines, central line extends full length of leaf, other veins need not connect to base of midrib/petiole \mathbf{R} ruled lines label lines must make contact with midrib
(ii)	line drawn for widest part of leaf $\mathbf{R} \pm 1(\mathrm{~mm})$; measurement of widest part of leaf $\mathbf{R}=15 \pm 1(\mathrm{~mm})$; mm recorded for at least one measurement;	3	
(iii)	formula: $\quad \frac{\text { widest part of drawing ; }}{\text { widest part of specimen }}$ calculation: magnification correct from their figures;	2	measurements should be same as in (a)(ii) A ecf for cm measurements A words or figures answer must be whole number

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

(c) (i)	temperature;	keep in the same room/put into an environmental chamber/AW;	$\max 4$	A description e.g. lamp and a heat shield
	idea of no air currents/wind/ draughts;	keep all windows and doors closed/idea of a screen around the balance/AW;		
	(sun) light (intensity);	use a light source at a fixed distance/same light source/AW;		A keep in dark
	leaf surface area;	use leaves of same size of leaf/surface area;		
	mark as pairs, one mark for a correct variable and one mark for a suitable method			
(ii)	method of collecting liquid / water / water vapour; test for water: use (dry) cobalt chloride paper/test (liquid) boiling point/freezing point for water; result: cobalt chloride changes in colour from blue to pink / boiling point $100^{\circ} \mathrm{C} /$ freezing point $0^{\circ} \mathrm{C}$;		3	A e.g. clip paper to leaf, collect water/liquid / water vapour in bag/tube/box A any other anhydrous salt

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	61

(iii)	similarities: (max 2) both leaves lose water/mass; both leaves lose more water at the start/water loss slows with time; actual loss as percentage of leaf mass is almost the same; differences: (max 2) leaf W loses more water than leaf V/ ora; calculation of data; leaf V appears to have anomalous result (at $10 / 15 \mathrm{~min}$)/ leaf V increase in mass between 10 and $15 \mathrm{~min} / \mathrm{AW}$; mass leaf V stops losing mass/stays constant at 50 mins;	max 4	A W loses water at a faster rate than V. A 65\% loss for V and 64\% loss for W A leaf W loses $4.8 \mathrm{~g} /$ leaf \mathbf{V} loses $3.4 \mathrm{~g} / \mathbf{W}$ loses 1.4 g more than V A At $15 \mathrm{~min} \mathbf{V}$ increases by 1.5 g
		[Total: 23]	

