MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2013	0620	32
1	(a) (i)	acce	ed noble gas ept: any noble gas ept: symbol		[1]
	(ii)		/ CO ₂ names not: equations		[1]
	(b) (i)	at hi	gen and nitrogen (in air) (react) gh temperature ept: in engines / lightning not: in exhausts		[1] [1]
	(ii)	acce	il fuels / fuels which contain sulfur ept: named fossil fuel such as coal / oil / natural gas i / combust	5	[1] [1]
	(iii)	dam unav	two from: age buildings / soil acidification / leaching from vailable / kill microbes / acidify lakes / kill fish / d vth / crop loss		
	(c) (i)		<u>gen</u> reacts with copper rm copper oxide (which is black)		[1] [1]
	(ii)	temp	sure volume at room temperature / gas has peratures / volume of gas depends on temperatur t causes expansion (of gases) / ORA		
	(iii)	no o	xygen left or <u>all</u> the oxygen has reacted (with coppe	er)	[1]
	(iv)	39–4	40 cm ³ note: units required		[1]
2	(a) B ³ pos		charge +		[1] [1]
	C g	$_{30}^{55}$ Zn			[1]
		⁶ ₈ O arge 2	!		[1] [1]
	E	⁷⁰ ₃₁ Ga			[1]
	(b) nur	nber (of p = number of e		[1]
	nur	nber (of p > number of e		[1]
	nur	nber (of p < number of e		[1]

Page 3			3	Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2013	0620	32
3	(a)	(i)	<u>com</u>	plete combustion / combustion in excess oxygen		[1]
			of fu	uels containing carbon / fossil fuels / hydrocarbon (fu	[1]	
			prod	[1]		
		(ii)	living (oxic suga	[1] / carbohydrate / [1]		
			prod		[1]	
	(b)	b) (i) glucose or starch or carbohydrate				[1]
			oxyg	gen		[1]
		(ii)	light	/ sunlight / sun / UV		[1]
			chlo	rophyll accept: chloroplast		[1]
4	(a)	(i)		reaction me / moles / molecules of reactants and products a	re different	[1]
				ond reaction me / moles / molecules of reactants and products a	re the same	[1]
	• •			reaction (forward) reaction is endothermic and reaction (forward) reaction is exothermic		[1] [1]
	(b)	(i)	C ₈ H∕	$_{18} \rightarrow 2C_4H_8 + H_2$		[1]
	(ii)		2H⁺	+ 2e \rightarrow H ₂		[2]
			acce	H₃O ⁺ + 2e → H₂ + 2H₂O ept: –2e on right hand side accept: e [−] e: not balanced = 1		
		(iii)	con bact	rine / Cl ₂ / d: water treatment / solvents / plastics / PVC / b eria / sterilising water / chlorination <u>of water</u> / picides / insecticides / germicides / pharmaceuticals		
			sodi	um hydroxide/NaOH		[1]
				d: making soap / degreasing / making paper / deter ring drains / alumina from bauxite / oven cleaner / b	-	/ paint stripper / [1]

	Page 4			Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2013	0620	32	
5	о О			s not decay or non-biodegradable asily moulded or low density / light / lightweight or s not corrode or durable	or flexible waterproof / inso	or bendable luble in water or [1]	
	((ii)	chloi hydr	two from: rine ogen chloride on monoxide		[2]	
	 (b) (i) CH₃—CH = CH₂ note: can be fully or semi-displayed, C = C must be shown 				own	[1]	
				ect repeat unit (C_6H_5) – CH_2 –		[1]	
		[1]					
	(c) (ation) / (small) [1]					
	phenylethene one product (polymer) / addition (polymerisation)						
6			ions	cannot move / no free ions in solid state can move / free ions in liquid state e: ions can <u>only</u> move in liquid state = 2		[1] [1]	
	(ii) ro		redu	ce melting point / reduce energy costs / better cond	luctor when disso	olved in cryolite [1]	
	(iii)			s in oxygen / reacts with oxygen / oxidised by oxyg on monoxide	en / forms carbo	n dioxide / forms [1]	
	(iv) h		high	melting point / inert / unreactive		[1]	
	(b)	prot	ective	e / unreactive / resists / prevents corrosion / non-po	rous (layer)	[1]	
	(of (a	alumi	nium) oxide		[1]	
	(c)	(i)	-	d conductor (of electricity) density / light / lightweight		[1] [1]	
	((ii)		I core (increased) strength / prevent sagging / to inc aration of pylons / support	crease	[1]	

Page 5			Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2013	0620	32
7	(a)	(i)	C ₂ H ₅ note	COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / C ₅ OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not: –OCO– linkage : formulae can be displayed or semi-displayed : penalise sticks (i.e. any missing atoms)	CH ₃ CO ₂ C ₂ H ₅ /	[1]
	((ii)	buty	I methanoate		[1]
	(b)	(i)	fats	/ <u>vegetable</u> oils / triglycerides / lipids		[1]
	((ii) two correct ester linkages, e.g. –OOC / –O ₂ C and –COO / –CO ₂				[1]
		contents of the 'boxes' being C_6H_4 and C_2H_4 or CH_2CH_2 continuation bonds at both ends				
	(c)	(c) (i) to make colourless / invisible (spots) visible / coloured / seen / position made clear / indicate				[1] [1]
	((ii) <u>distance travelled by sample</u> = R _f distance travelled by solvent (front)				
	(i	iii)		ple 1 R_f = 0.20 to 0.24 tartaric (acid) ple 2 R_f = 0.44 to 0.48 malic (acid)		[1] [1]
8	(a)	 (i) (the number of particles which is equal to the number of atoms in) 12g of or the mass in grams which contains the Avogadro's constant number of particles or Avogadro's constant or 6 to 6.023 × 10²³ of atoms / ions / molecul particles or (the amount of substance which has a mass equal to) its relative formula atomic mass / relative molecular mass in grams 				rticles es / electrons /
			or (the	amount of substance which has a volume equal to)	24 dm³ of a <u>gas</u> a	t RTP [1]
	((ii)	à sul or the <u>r</u> or the r or	bgadro's constant is the) number of particles / atoms bstance <u>number</u> of carbon atoms in 12g of C(12). number of particles / molecules in 24 dm ³ of a <u>gas</u> at 6.023×10^{23} (particles / atoms / ions / molecules / el	RTP	
			010			[1]
	(b)	(b) CH_4 and SO_2				[1]
		014	· · ·			

 $2/16 = 1/8 \text{ or } 0.125 \text{ moles of } CH_4 \text{ AND } 8/64 = 1/8 \text{ or } 0.125 \text{ moles of } SO_2$ [1]

Page 6	5	Mark Scheme	Syllabus	Paper			
		IGCSE – May/June 2013	0620	32			
(c) (i)		40 = 0.12 moles of Ca 18 = 0.2 moles of H ₂ O both correct		[1]			
(ii)	(ii) Ca is in excess (no mark) (because 0.12 moles of Ca need) 0.24 moles / 4 to react there is not enough / there are 0.2 moles / 3.6g of H ₂ O or						
	Ca 0.1m	is in excess (no mark) (because 0.2 moles / noles/4.0g of Ca e is more than that / there are 0.12 moles / 4.8g of 0	-	will react with) [1] [1]			
		s in excess (no mark) because the mole ratio Ca:H h is <u>bigger than</u> the required mole ratio of 1:2 / mas	—	atio 4:3 [1] [1]			
		s in excess (no mark) because the mole ratio H ₂ O: th is <u>smaller than</u> the required mole ratio of 2:1 / ma		atio 3:4 [1] [1]			
(iii)	0.02	× 40 = 0.8 (g)		[1]			