UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | Paper 3 (Extended) | May/June 2013
1 hour 15 minutes | |--------------------|------------------------------------| | CHEMISTRY | 0620/31 | | CENTRE
NUMBER | CANDIDATE
NUMBER | | CANDIDATE
NAME | | Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 12. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | 1 Petroleum contains hydrocarbons which are separated by fractional distillation. | | | | | |---|------------------|------|---|--------| | | (a) | (i) | Complete the following definition of a hydrocarbon. | | | | | | A hydrocarbon is a compound which | | | | | | | . [2] | | | | (ii) | Explain what is meant by the term <i>fractional distillation</i> . | . [-] | | | (b) | | ne of the fractions obtained from petroleum are given below.
te a use for each fraction. | | | | | bitu | men | | | | | lubi | ricating fraction | | | | | par | affin fraction | | | | | gas | soline fraction | [4] | | | | | [Tota | al: 8] | | 2 | An | elem | nent, M , has the electron distribution 2 + 8 + 18 + 3. | | | | (a) | Wh | ich group in the Periodic Table is element M likely to be in? | | | | () | | , | . [1] | | | | | | . [.] | | | (b) | | dict whether element M is a poor or a good conductor of electricity. e a reason for your answer. | | | | | | | . [1] | | | (c) | Rin | ary compounds contain two atoms per molecule, for example HC <i>l</i> . | | | | (0) | | ntify an element which could form a binary compound with element M . | | | | | | | . [1] | | | (₄) | Dro | dict the formula of the cultate of M. The formula of the cultate ion is SO 2- | | | | (u) | гіе | dict the formula of the sulfate of \mathbf{M} . The formula of the sulfate ion is SO_4^{2-} . | [4] | | | | | | . [1] | | For | |------------| | Examiner's | | 1100 | | (e) The hydroxide of M is a white powder which is insoluble in water. Describe how you could show that this hydroxide is amphoteric. | | | | | | | | | | |---|---|---|----------|--------|--|--|--|--|--| . [2] | | | | | | | | | | [Tota | al: 6] | | | | | | | | | | | | | | | | | | 1.0 mol/dm³, at 2 was repeated us experiments. | A small piece of marble, $CaCO_3$, was added to $5.0cm^3$ of hydrochloric acid, concentration $1.0mol/dm^3$, at $25^{\circ}C$. The time taken for the reaction to stop was measured. The experiment was repeated using $5.0cm^3$ of different solutions of acids. The acid was in excess in all of the experiments. Typical results are given in the table. | | | | | | | | | | experiment | temperature/°C | acid solution | time/min | | | | | | | | 1 | 25 | hydrochloric acid 1.0 mol/dm ³ | 3 | | | | | | | | 2 | 25 | hydrochloric acid 0.5 mol/dm3 | 7 | | | | | | | | 3 25 ethanoic acid 1.0 mol/dm³ 10 | | | | | | | | | | | 4 | 4 15 hydrochloric acid 1.0 mol/dm³ 8 | | | | | | | | | | (a) (i) Explain why it is important that the pieces of marble are the same size and the same shape. | | | | | | | | | | | (a) | (i) | Explain why it is important that the pieces of marble are the same size and the same shape. | |-----|------|---| | | | | | | | | | | | [2] | | | (ii) | How would you know when the reaction had stopped? | **(b)** The equation for the reaction in experiment 1 is: $$CaCO_{3}(s) \ + \ 2HC\mathit{l}(aq) \ \rightarrow \ CaC\mathit{l}_{2}(aq) \ + \ CO_{2}(g) \ + \ H_{2}O(I)$$ Complete the following ionic equation. 3 [1] For Examiner's Use | (c) | (i) | Explain why the reaction in experiment 1 is faster than the reaction in experiment 2. | |-----|------|--| | | (ii) | The acids used for experiment 1 and experiment 3 have the same concentration. Explain why experiment 3 is slower than experiment 1. | | | | Explain why experiment one diewer than experiment 1. | | (| iii) | Explain in terms of collisions between reacting particles why experiment 4 is slower than experiment 1. | | | | | | | | [3] [Total: 10] | | The | stru | ctural formula of cyclohexane is drawn below. | | | | CH ₂ | | | | H ₂ C CH ₂ | | | | H_2C CH_2 CH_2 | | (a) | Hex | name gives information about the structure of the compound. a because there are six carbon atoms and cyclo because they are joined in a ring. at information about the structure of this compound is given by the ending ane ? | | | | [2] | | (b) | Wha | at are the molecular and empirical formulae of cyclohexane? | | | mol | ecular formula | | | emp | pirical formula[2] | 4 | (c) | Draw the structural formula of cyclobutane. | For
Examiner's
Use | |-----|---|--------------------------| | | | | | | [1] | | | (d) | | | | | (ii) Explain why cyclohexane and the alkene, hexene, are isomers. | | | | [2] | | | (e) | Describe a test which would distinguish between cyclohexane and the unsaturated hydrocarbon hexene. | | | | test | | | | result of test with cyclohexane | | | | result of test with hexene | | | | [3] [Total: 11] | | | | | | - 5 The reactivity series shows the metals in order of reactivity. - (a) The reactivity series can be established using displacement reactions. A piece of zinc is added to aqueous lead nitrate. The zinc becomes coated with a black deposit of lead. $$Zn + Pb^{2+} \rightarrow Zn^{2+} + Pb$$ Zinc is more reactive than lead. The reactivity series can be written as a list of ionic equations. \rightarrow + most reactive metal: the best reductant (reducing agent) Zn \rightarrow Zn²⁺ + 2e⁻ Fe \rightarrow Fe²⁺ + 2e⁻ $Cu \rightarrow Cu^{2+} + 2e^{-}$ \rightarrow Pb²⁺ + 2e⁻ $Ag \rightarrow Ag^+ + e^-$ - (i) In the space at the top of the list, write an ionic equation for a metal which is more reactive than zinc. [1] - $\textbf{(ii)} \quad \text{Write an ionic equation for the reaction between aqueous silver} (I) \text{ nitrate and zinc.}$[2] (iii) Explain why the positive ions are likely to be oxidants (oxidising agents).[1] (iv) Deduce which ion is the best oxidant (oxidising agent).[1] (v) Which ion(s) in the list can oxidise lead metal?[1] For Examiner's Use **(b)** A reactivity series can also be established by measuring the voltage of simple cells. The diagram shows a simple cell. Results from cells using the metals tin, cadmium, zinc and copper are given in the table below. | cell | electrode 1
positive electrode | electrode 2 negative electrode | voltage/volts | | |------|-----------------------------------|--------------------------------|---------------|--| | 1 | copper | cadmium | 0.74 | | | 2 | copper | tin | 0.48 | | | 3 | copper | zinc | 1.10 | | | | | he table to determine this order. | |---|-----------------|--| | | | | | | | [3] | | | | [Total: 9] | | 6 | Ammor
weak b | ia is a compound which only contains the elements nitrogen and hydrogen. It is a ase. | | | (a) (i) | Define the term base. | | | | [1] | | | (ii) | Given aqueous solutions of ammonia and sodium hydroxide, both having a concentration of 0.1mol/dm^3 , how could you show that ammonia is the weaker base? | | | | | | | | | | | | [2] | (b) Ammonia is manufactured by the Haber Process. The economics of this process require that as much ammonia as possible is made as quickly as possible. Explain how this can be done using the following information. The conditions for the following reversible reaction are: - 450°C - 200 atmospheres pressure - iron catalyst | $N_2(g)$ | + 3H ₂ | (g) ← | 2NH ₃ (g) | the re | action is | exotherr | nic | | |----------|-------------------|------------------|----------------------|--------|-----------|----------|-----|---------| |
 | | | | | | | |
 | |
 | | | | | | | |
 | |
 | | | | | | | |
 | |
 | | | | | | | |
 | |
 | | | | | | | |
 | |
 | | | | | | | |
[5] | (c) Another compound which contains only nitrogen and hydrogen is hydrazine, N₂H₄. Complete the equation for the preparation of hydrazine from ammonia. $$NH_3 + NaClO \rightarrow N_2H_4 + + H_2O$$ [2] (d) The structural formula of hydrazine is given below. Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound hydrazine. Use x to represent an electron from a nitrogen atom. Use o to represent an electron from a hydrogen atom. | For | |------------| | Examiner's | | 1100 | | (e) | Hydrazine is a weak base and it removes | dissolved | oxygen | from | water. | It is | added | to | |-----|--|-----------|--------|------|--------|-------|-------|----| | | water in steel boilers to prevent rusting. | | | | | | | | | (i) | One way it reduces the rate of rusting is by changing the pH of water. What effect would hydrazine have on the pH of water? | | |------|---|-------------| | | | [1] | | (ii) | Give a reason, other than pH, why hydrazine reduces the rate of rusting. | | | | | [1] | | | | [Total: 15] | - 7 The hydroxides of the Group I metals are soluble in water. Most other metal hydroxides are insoluble in water. - (a) (i) Crystals of lithium chloride can be prepared from lithium hydroxide by titration. 25.0 cm³ of aqueous lithium hydroxide is pipetted into the conical flask. A few drops of an indicator are added. Dilute hydrochloric acid is added slowly to the alkali until the indicator just changes colour. The volume of acid needed to neutralise the lithium hydroxide is noted. A neutral solution of lithium chloride, which still contains the indicator, is left. Describe how you could obtain a neutral solution of lithium chloride which does **not** contain an indicator. For Examiner's Use | | (ii) | You cannot prepare a neutral solution of magnesium chloride by the same method. Describe how you could prepare a neutral solution of magnesium chloride. | | | | | | | | | | | |-----|--------|--|--|--|--|--|--|--|--|--|--|--| | | | [3] | | | | | | | | | | | | (b) | to n | concentration of the hydrochloric acid was 2.20 mol/dm³. The volume of acid needed eutralise the 25.0 cm³ of lithium hydroxide was 20.0 cm³. Calculate the concentration ne aqueous lithium hydroxide. | | | | | | | | | | | | | | LiOH + HCl → LiCl + H ₂ O | | | | | | | | | | | | | | [2] | | | | | | | | | | | | (c) | Whi | ium chloride forms three hydrates. They are $LiC_L^1H_2O$, $LiC_L^12H_2O$ and $LiC_L^13H_2O$. ch one of these three hydrates contains 45.9% of water? w how you arrived at your answer. | [3] | | | | | | | | | | | | | | [Total: 10] | | | | | | | | | | | | The | ere ai | re three types of giant structure - ionic, metallic and giant covalent. | | | | | | | | | | | | (a) | In a | n ionic compound, the ions are held in a lattice by strong forces. | | | | | | | | | | | | | (i) | Explain the term <i>lattice</i> . | [2] | | | | | | | | | | | | | (ii) | Explain how the ions are held together by strong forces. | [1] | | | | | | | | | | | © UCLES 2013 0620/31/M/J/13 8 For Examiner's Use | (b) | Describe the bonding in a typical metal. | | | | | | | | | | | | |-----|--|-------------------|---|------------------------|-------------|--|--|--|--|--|--|--| [3] | | | | | | | | | (c) | The electrical conductivities of the three types of giant structure are given in the following
table. | | | | | | | | | | | | | | | type of structure | conductivity of solid | conductivity of liquid | | | | | | | | | | | | ionic | poor | good | | | | | | | | | | | | metallic | good | good | | | | | | | | | | | | giant covalent | poor | poor | | | | | | | | | | | | | lectrical conductivity bet
between the solid and lic | [5] | | | | | | | | | | | | | | [Total: 11] | | | | | | | | © UCLES 2013 0620/31/M/J/13 University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. ## DATA SHEET The Periodic Table of the Elements | Group | | | | | | | | | | | | | | | | | | |-----------------------------------|----------------------------------|---|------------------------------------|-------------------------------------|------------------------------|------------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------| | I | Ш | | | | | | | | | | | III | IV | V | VI | VII | 0 | | 1
H
Hydrogen | | | | | | | | | | | | | | | | 4
He
Helium | | | 7
Li
Lithium | 9
Be
Beryllium | | | | | | | ı | | | | 11 B Boron 5 | 12
C
Carbon | 14
N
Nitrogen | 16
O
Oxygen
8 | 19
F
Fluorine | 20
Ne
Neon | | 23
Na
Sodium | 24
Mg
Magnesium
12 | | | | | | | | | | | 27
A 1
Aluminium
13 | 28
Si
Silicon | 31
P
Phosphorus
15 | 32
S
Sulfur
16 | 35.5
C1
Chlorine
17 | 40
Ar
Argon | | 39
K
Potassium
19 | 40
Ca
Calcium
20 | 45
Sc
Scandium
21 | 48
Ti
Titanium
22 | 51
V
Vanadium
23 | 52
Cr
Chromium
24 | 55
Mn
Manganese
25 | 56
Fe
Iron | 59
Co
Cobalt
27 | 59
Ni
Nickel
28 | 64
Cu
Copper
29 | 65
Zn
Zinc | 70
Ga
Gallium
31 | 73
Ge
Germanium
32 | 75
As
Arsenic | 79
Se
Selenium
34 | Br Bromine 35 | 84
Kr
Krypton
36 | | 85
Rb
Rubidium
37 | 88
Sr
Strontium
38 | 89
Y
Yttrium
39 | 91
Zr
Zirconium
40 | 93
Nb
Niobium
41 | 96
Mo
Molybdenum
42 | Tc
Technetium
43 | 101
Ru
Ruthenium | 103
Rh
Rhodium
45 | 106
Pd
Palladium
46 | 108
Ag
Silver | 112
Cd
Cadmium
48 | 115
In
Indium | 119 Sn Tin | 122
Sb
Antimony
51 | 128
Te
Tellurium
52 | 127
I
lodine
53 | 131
Xe
Xenon
54 | | 133
Cs
Caesium
55 | 137
Ba
Barium | 139
La Lanthanum 57 * | 178
Hf
Hafnium
72 | 181
Ta
Tantalum
73 | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 192
Ir
Iridium | 195
Pt
Platinum
78 | 197
Au
Gold
79 | 201
Hg
Mercury | 204
T <i>I</i>
Thallium
81 | 207
Pb
Lead | 209
Bi
Bismuth | Po
Polonium
84 | At Astatine 85 | Rn
Radon
86 | | Fr
Francium
87 | 226
Ra
Radium
88 | 227
Ac
Actinium
89 † | | | | | | | | | | | | | | | | | *58-71 Lanthanoid series | | 140
Ce
Cerium
58 | 141
Pr
Praseodymium
59 | 144
Nd
Neodymium
60 | Pm
Promethium
61 | 150
Sm
Samarium
62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159
Tb
Terbium
65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | 173
Yb
Ytterbium
70 | 175
Lu
Lutetium
71 | | | | Key | X x | = relative ator
= atomic sym
= proton (aton | bol | 232
Th
Thorium
90 | Pa
Protactinium
91 | 238
U
Uranium
92 | Np
Neptunium
93 | Pu
Plutonium
94 | Am
Americium
95 | Cm
Curium
96 | Bk
Berkelium
97 | Cf
Californium
98 | Es Einsteinium 99 | Fm
Fermium
100 | Md
Mendelevium
101 | No
Nobelium
102 | Lr Lawrencium 103 | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).