MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Pag	je 2	Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2014	0620	32
1	(a)	A and	E need both (1)		[1]
	(b)	D (1)			[1]
	(c)	C (1)			[1]
	(d)	B (1)			[1]
	(e)	F (1)			[1]
	(f)	E (1)			[1]
	(g)	C (1)			[1]
					[Total: 7]
2	(a)		bstance/material/compound/element/mixture (burn ergy or heat (1)	nt) to <u>produce/release</u>	[1]
	((ii) Ar	y two from: coal coke peat petroleum/ crude oil refinery gas/LPG gasoline/petrol naptha kerosene/paraffin diesel (oil)/gas oil fuel oil propane butane		[2]
	<i>(</i> i	iii) wa	ood/charcoal/animal dung/biomass/Uranium/U/plu	itonium/Pu (1)	[1]
		,	0		

	Pa	ge 3	6	Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2014	0620	32
	(b)	(i)	-	two from: water/steam/water vapour/H ₂ O (1) carbon dioxide/CO ₂ (1) carbon monoxide/CO (1)		[2]
		(ii)	any	two from:		
			limite	ed or finite resource/non-renewable/will run out/de	epleted (1)	
			gree	nhouse effect/gas(es)/climate change/(cause) glo	bal warming (1)	
			acid	rain (1)		
			prod	uction of <u>poisonous/toxic</u> gases (1)		[2]
						[Total: 8]
3	(a)	(i)	pres	sure 150–300 atmospheres/atm (1)		
			temp	perature accept in range 370 to 470 <u>°C</u> (1)		
			iron	(catalyst) (1)		
			bala	nced equation $N_2 + 3H_2 \Rightarrow 2NH_3$ (1)		
			equi	librium/reversible (1)		[5]
		(ii)	pota	ssium/K (1)		
			phos	sphorus/P (1)		[2]
	(b)	(i)		fossil fuels/burn fuels containing sulfur/burn co n/burn ores containing sulfur/roast metal sulfides		
			sulfu	$r dioxide/SO_2$ (formed) (1)		
			(forn	n) sulfuric/H ₂ SO ₄ /sulfurous acid/H ₂ SO ₃ (1)		
			OR			
				gen and oxygen (in air) react at high temperature nes/lightning. (1)	es/in jet engines/c	car
			(forn	n) oxides of nitrogen (1)		
			(forn	n) nitric acid/HNO $_3$ /nitrous acid/HNO $_2$ (1)		[3]

Page	4	Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2014	0620	32	
(ii)		any two from: calcium oxide/lime/quicklime/CaO (1) calcium hydroxide/Ca(OH) ₂ /lime/slaked lime/limewater (1) calcium carbonate/CaCO ₃ /limestone/chalk/marble (1) guidance: 'lime' can only be credited once.			
4 (a) (i) buta	anoic/butyric acid (1)			
	CH	$_{3}CH_{2}CH_{2}COOH/C_{2}H_{5}CH_{2}COOH$ (1)		[2]	
(ii) any	three from:			
	(sar	ne) general formula (1)			
	(cor	nsecutive members) differ by CH_2 (1)			
	san	ne functional group (1)			
	con	nmon methods of preparation (1)			
	cha or e	sical properties vary in predictable manner/sł nge example of a physical property variation i.e. meltir atility (1)	-	-	
(b) (i) disp	played formula of propan-1-ol, all bonds shown sepa	arately (1)	[1]	
(ii) acio	lified (1)			
		assium manganate <u>(VII)</u> /potassium permanganate/ nromate(VI)/K ₂ Cr ₂ O ₇ /potassium dichromate (1)	′KMnO₄ or potassiu	m [2]	
(c) (i) zinc	z + propanoic acid \rightarrow <u>zinc propanoate</u> (+ hydroge	n) (1)	[1]	
(ii) calo	calcium oxide + propanoic acid \rightarrow <u>calcium propanoate + water</u> (1)			
(iii	(iii) LiOH + CH ₃ CH ₂ COOH \rightarrow <u>CH₃CH₂COOLi + H₂O</u> (1)				
(d) (i		<u>centration (</u> of acid in C) is less/halved or concer bled. (1)	ntration <u>of A</u> is more	e/	
	less	s collisions or more collisions <u>in A</u> (than in C) (1)		[2]	
(ii	mor	her temperature in B particles/molecules/atom re energy/more have E _a or (particles/molecule ver/have less energy/less have E _a (1)			
	mor	re collisions or less collisions <u>in A</u> (than in B) (1)		[2]	

Page 5					Syllabus	Paper
				IGCSE – May/June 2014	0620	32
		(iii)	(D) c It (E) has strong (acid) and A has weak acid/(D) strong dissociates more or <u>A</u> is weaker/ <u>A</u> ionises less/ <u>A</u> d D) has <u>higher concentration of hydrogen ions</u> centration of hydrogen ions (1)	issociates less (1)	
			more	e collisions (in D) or fewer collisions $in A$ (1)		[3]
						[Total: 18]
5	(a)	(i)	incoi (1)	mplete combustion or limited oxygen/less oxyger	n/not enough oxygen	[1]
		(ii)	any	two from:		
			(forw	vard) reaction is endothermic (1)		
			-	temperature increases yield/favours forward reaction of the second s	tion/shifts equilibrium	
			faste	er reaction (rate) (1)		[2]
		(iii)	any	two from:		
			high	pressure reduces yield or favours LHS (1)		
				ause LHS has smaller volume or number of moles <i>l</i> as) ORA (1)	number of molecules	
			(high	n pressure plant is) expensive/dangerous/explosion	n/leaks	[2]
5	(b)	hyd	lroger	and chlorine / H_2 and Cl_2 (1)		
		sod	lium h	ydroxide/NaOH/Na⁺OH⁻(1)		
		2H ¹	⁺ + 2e	\rightarrow H ₂ /2H ⁺ \rightarrow H ₂ - 2e (1)		
		2Ci	$l^- \rightarrow 0$	$Cl_2 + 2e/2Cl^ 2e \rightarrow Cl_2$ (1)		
		Hyd	drogei	$n/H_2/H/H^+$ at cathode and chlorine/chloride/C l_2/C	Cl/Cl^{-} at anode (1)	[5]
5	(c)	<u>ea</u>	<u>ch</u> chl	orine 1 bond pair and 3 non-bond pair (1)		
		оху	gen a	tom 2 non-bond pairs and 2 bond pairs as double b	oond (1)	
		car	bon a	tom 4 bond pairs including 2 bond pairs as double b	bond (1)	[3]
						[Total: 13]

	Page 6		Mark Scheme Syllabus		Paper		
			IGCSE – May/June 2014	0620	32		
6	(a)	any three from: (it would have) more than one or variable valency/oxidation state/oxidation number (1)					
		(metal/e	lement/titanium/it has a) high density (1)				
		coloured	compounds/ions/solutions (1)				
		<u>form</u> cor	nplex (ions) (1)				
		(element	/compound act as) catalyst (1)		[3]		
	(b)	ScF ₃ (1)					
		correct c	harges on <u>both</u> ions (1)				
		8 electro	ns around (each) fluoride(1)		[3]		
	(c)	name or	formula of strong acid and alkali (1)				
		reacts with or neutralises both acid and base or alkali (then amphoteric) (1)					
		it dissolv	es/soluble in both(acid and alkali) or form solutions	in both (1)	[3]		
					[Total: 9]		
7	(a)		vithout indicator/repeat using same volumes of a charcoal to remove indicator (1)	cid and alkali or use	Э		
		evaporat	e/heat/warm/boil/leave in sun (1)				
			est of the water has gone/some water is le ation point (1)	ft/saturation (point)	/		
		leave/al	ow to cool/allow to crystallise (1)				
			crystals)/wash(with distilled water)/dry crystals n warm place/oven/windowsill (1)	with filter paper/dr	y [5]		
	(b)	<u>0.062</u> (1)				
		0.031 (1)				
		3.97g (1)				
		55.4% (1)		[4]		

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0620	32

- (c) (i) (to prove) <u>all</u> water driven off or evaporated or boiled/no water remains/to make salt anhydrous (1)
 - (ii) $m_1 m_2$ = mass of water (1)

(calculate) moles of water AND moles of hydrated or anhydrous salt (1)

1:1 ratio/should be equal (1)

[3]