CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		3	IGCSE – May/June 2014	0620	33	
1	(a)	carbon dioxide (1)				
	(b)	proper	ne (1)		[1]	
	(c)	krypto	n (1)		[1]	
	(d)	nitroge	en (1)		[1]	
	(e)	fluorin	e (1)		[1]	
	(f)	sulfur	dioxide (1)		[1]	
	(g)	hydrog	jen (1)		[1]	
					[Total: 7]	
2	(a)	any th particle move t collide more p guidan	y to react is worth (2)	[3]		
	(b)	particle	es move in all directions/randomly <u>in both</u> liquids a	and gases (1)		
			nds/very weak forces between particles in gases (ules can move apart/separate (to fill entire volume			
		bonds	/forces/IMF between particles in liquids (1) ules cannot move apart/separate (so fixed volume	in liquids) (1)	[3]	
					[Total: 6]	
3	(a)	(i) er	nzymes (1)		[1]	
		m fe Ol		of microbes is lower/		
			nzymes less efficient at lower temperatures (1) ower reaction rate (1)		[2]	
	(b)	rest of	t linkage (1) molecule correct and continuation shown (1) product is) water (1)		[3]	

Mark Scheme

Syllabus

Paper

Page 2

	Page 3			Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2014	0620	33
	, , 	any three from: photosynthesis (1) light/photochemical (1) chlorophyll/chloroplasts (1) carbon dioxide and water needed (1) (glucose and) oxygen (1)				[3]
						[Total: 9]
4	(a)	(i)	fracti	limestone/calcium carbonate (1) ional distillation (1) d air (1)		[3]
	(ii)	•	two of the oxides, C, S, P and Si, mentioned (1) on dioxide and sulfur dioxide escape/are gases (1)		
				sphorus oxide or silicon(IV) oxide react with calcium sphorus oxide or silicon(IV) oxide are acidic and cal		1)
			to for	rm a slag or calcium silicate or calcium phosphate	(1)	
			must	t have correct equation for one of the above reactio	ns (1)	[5]
	(b)	(i)		e/rows/regular arrangement of cations/positive ion ile/free/delocalised/sea of electrons (1)	ns/Fe ²⁺ (1)	[2]
	(ii)		ows of ions/ions can move past each other (1) out the metal breaking/bonds are not directional/no	ot rigid (1)	[2]
	(i	ii)		on particles/atoms different size (1) ents movement of rows, etc. (1)		[2]
						[Total: 14]
5	`´ hig gre		ner co ater yi	action rate (1) ollision rate (1) ield or favour RHS (1) favours products because it has lower volume/fewer	product molecules (1) [4]
	thi		is the	mperature favour endothermic reaction (1) e back reaction/left hand side/reactants (1) ield (1)		[3]
	(c)	(i)	great	ter surface area (1)		[1]
	(ii)	can ı	ease reaction rate (1) use a lower temperature to have an economic rate not decrease yield (by increasing temperature).	(1)	[2]

Р	age 4		Syllabus	Paper	
		IGCSE – May/June 2014	0620	33	
(d	onl OR add onl OR inc	d water (1) y ammonia will dissolve (1)		[2]	
(e)	thir fou all	second line $+3 \times 155 = +465$ third line $-3 \times 280 = (-)840$ fourth line $-3 \times 565 = (-)1695$ all three correct (2) two correct (1)			
	840				
	bot exc		[4]		
		· · · · · · · · · · · · · · · · · · ·		[Total: 16]	
				[Total: To]	
6 (a)) (i)	C and H only (1)		[1]	
	(ii)	only single bonds (1)		[1]	
(b)) (i)	$C_nH_{2n+2}(1)$		[1]	
	(ii)	$C_{14}H_{30}$ (1) (14 × 12) + 30 = 198 (g) (1)		[2]	
(c)) (i)	$C_9H_{20} + 14 O_2 \rightarrow 9CO_2 + 10H_2O (2)$		[2]	
	(ii)	Volume ratio $C_xH_y(g) + O_2(g) \rightarrow CO_2(g) + H_2O(I)$ 20 160 100 1	all in cm ³ mole ratio	[3]	
		TOT Oquation as above (2)		[0]	
(d) (i)	alkanes in petrol/fuel/solvent (1) alkenes to make alcohols/plastics/polymers/solvent (1) to make ammonia/fuel/fuel cells, etc. (1)		[3]	
	(ii)	a correct equation for example: $C_{10}H_{22} \rightarrow C_8H_{16} + C_2H_4 + H_2$ (1)		[1]	

Mark Scheme

Page 4

Syllabus

Paper

				IGCSE – May/June 2014	0620	33
	(e)	(i)	light	or lead tetraethyl/catalyst/high temperature (1)		[1]
		(ii)	CH ₃	-CHCI-CH ₃ (1)		[1]
						[Total: 16]
7	(a)	bau	ıxite (1)		[1]
	(b)	electrolyte alumina/aluminium oxide dissolved in molten cryolite (1) use cryolite to reduce mp/comparable idea/temperature of electrolyte 900 to 1000°C (1) electrodes carbon (1) aluminium formed at cathode/A l^{3^+} + 3e \rightarrow A l (1) oxygen formed at anode/2O $^{2^-}$ \rightarrow O $_2$ + 4e (1) anode burns/reacts to carbon dioxide/C + O $_2$ \rightarrow CO $_2$ (1)				to [6]
	(c)	(i)	food	containers/window frames/cooking foil/cars/bikes	s/drink cans (1)	[1]

Syllabus

Paper

[2]

[2]

[Total: 12]

Mark Scheme

Page 5

(ii) $4OH^- \rightarrow O_2 + 2H_2O + 4e$ (2)

 $4Al + 3O_2 \rightarrow 2Al_2O_3$ (2)