## Cambridge International Examinations

IGCSE

## Cambridge International General Certificate of Secondary Education



## CHEMISTRY

0620/51
Paper 5 Practical Test
May/June 2015
1 hour 15 minutes
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Practical notes are provided on page 8.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |
| :---: | :--- |
| Total |  |

This document consists of 8 printed pages.

1 You are going to investigate what happens when aqueous sodium hydroxide reacts with aqueous solutions of two different acids, $\mathbf{A}$ and $\mathbf{B}$.

Read all the instructions below carefully before starting the experiments.

## Instructions

You are going to carry out two experiments.
(a) Experiment 1

Use a measuring cylinder to pour $50 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide into the polystyrene cup provided. Put the cup into a $250 \mathrm{~cm}^{3}$ beaker for support. Measure the initial temperature of the solution and record it in the table below.

Fill the burette with the solution of acid $\mathbf{A}$ provided to the $0.0 \mathrm{~cm}^{3}$ mark.
Add $5.0 \mathrm{~cm}^{3}$ of acid $\mathbf{A}$ to the aqueous sodium hydroxide in the cup and stir the mixture.
Measure and record the maximum temperature of the solution in the table below. Add a further $5.0 \mathrm{~cm}^{3}$ of acid $\mathbf{A}$ to the cup and stir the mixture. Measure and record the temperature of the mixture in the table below.
Continue to add $5.0 \mathrm{~cm}^{3}$ portions of acid $\mathbf{A}$ to the cup, until a total volume of $40 \mathrm{~cm}^{3}$ of acid has been added. Stir after each addition and measure and record the temperatures in the table.

At the end of this experiment, pour the solution away and rinse the polystyrene cup.

| volume of acid $\mathbf{A}$ added $/ \mathrm{cm}^{3}$ | temperature of solution <br> in polystyrene cup $/{ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
| 0.0 |  |
| 5.0 |  |
| 10.0 |  |
| 15.0 |  |
| 20.0 |  |
| 25.0 |  |
| 30.0 |  |
| 35.0 |  |
| 40.0 |  |

(b) Experiment 2

Empty the burette and rinse it with distilled water. Half fill the burette with the solution of acid $\mathbf{B}$ and swirl the contents. Discard this acid.
Now fill the burette to the $0.0 \mathrm{~cm}^{3}$ mark with the solution of acid $\mathbf{B}$.
Repeat Experiment 1 using acid B instead of acid $\mathbf{A}$.
Record your results in the table below.

| volume of acid $\mathbf{B}$ added $/ \mathrm{cm}^{3}$ | temperature of solution <br> in polystyrene cup $/{ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
| 0.0 |  |
| 5.0 |  |
| 10.0 |  |
| 15.0 |  |
| 20.0 |  |
| 25.0 |  |
| 30.0 |  |
| 35.0 |  |
| 40.0 |  |

(c) Plot the results for Experiments 1 and 2 on the grid and draw a smooth line graph for each experiment.
Clearly label your graphs.

[5]
(d) Use your graph to estimate the temperature of the reaction mixture when $8 \mathrm{~cm}^{3}$ of acid $\mathbf{B}$ were added to $50 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide.

Show clearly on the graph how you worked out your answer.
(e) What type of chemical reaction, other than neutralisation, occurs when acid $\mathbf{A}$ reacts with sodium hydroxide?
$\qquad$
(f) Why was the burette rinsed firstly with distilled water and then with acid B before starting Experiment 2?
$\qquad$
$\qquad$
(g) The solutions of acids $\mathbf{A}$ and $\mathbf{B}$ are the same concentration.
(i) In which experiment is the maximum temperature change greater?
$\qquad$
(ii) Suggest why the maximum temperature change is greater in this experiment.
$\qquad$
$\qquad$
(h) Describe one source of error in Experiment 2. Suggest an improvement to reduce this source of error.
source of error $\qquad$ improvement

2 You are provided with solid $\mathbf{C}$, which is a salt containing two cations and one anion. Carry out the following tests on solid $\mathbf{C}$ recording all of your observations in the table. Conclusions must not be written in the table.

| tests |  |
| :--- | :--- |
| tests on solid C | observations |
| (a) Describe the appearance of solid C. | $\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~[1] ~$ |$]$

(g) What does test (b) tell you about the nature of solid $\mathbf{C}$ ?
$\qquad$
$\qquad$
$\qquad$
(h) What does test (e) tell you about the nature of solid $\mathbf{C}$ ?
$\qquad$
(i) What conclusions can you draw about the identity of solid $\mathbf{C}$ ?
$\qquad$
$\qquad$

## NOTES FOR USE IN QUALITATIVE ANALYSIS

## Test for anions

| anion | test | test result |
| :--- | :--- | :--- |
| carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ | add dilute acid | effervescence, carbon dioxide <br> produced |
| chloride $\left(\mathrm{Cl} l^{-}\right)$ <br> [in solution] | acidify with dilute nitric acid, then <br> add aqueous silver nitrate | white ppt. |
| iodide $\left(\mathrm{I}^{-}\right)$ <br> [in solution] | acidify with dilute nitric acid, then <br> add aqueous silver nitrate | yellow ppt. |
| nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$ <br> [in solution] | add aqueous sodium hydroxide <br> then aluminium foil; warm carefully | ammonia produced |
| sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ <br> [in solution] | acidify with dilute nitric acid, then <br> aqueous barium nitrate | white ppt. |

## Test for aqueous cations

| cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia |
| :--- | :--- | :--- |
| aluminium $\left(\mathrm{Al}^{3+}\right)$ | white ppt., soluble in excess giving <br> a colourless solution | white ppt., insoluble in excess |
| ammonium $\left(\mathrm{NH}_{4}^{+}\right)$ | ammonia produced on warming | - |
| calcium $\left(\mathrm{Ca}^{2+}\right)$ | white ppt., insoluble in excess | no ppt., or very slight white ppt. |
| copper $\left(\mathrm{Cu}^{2+}\right)$ | light blue ppt., insoluble in excess | light blue ppt., soluble in excess <br> giving a dark blue solution |
| iron $(\mathrm{II})\left(\mathrm{Fe}^{2+}\right)$ | green ppt., insoluble in excess | green ppt., insoluble in excess |
| iron $(\mathrm{III})\left(\mathrm{Fe}^{3+}\right)$ | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess |
| zinc $\left(\mathrm{Zn}^{2+}\right)$ | white ppt., soluble in excess giving <br> a colourless solution | white ppt., soluble in excess giving <br> a colourless solution |

## Test for gases

| gas | test and test results |
| :--- | :--- |
| ammonia $\left(\mathrm{NH}_{3}\right)$ | turns damp red litmus paper blue |
| carbon dioxide $\left(\mathrm{CO}_{2}\right)$ | turns limewater milky |
| chlorine $\left(\mathrm{Cl}_{2}\right)$ | bleaches damp litmus paper |
| hydrogen $\left(\mathrm{H}_{2}\right)$ | 'pops' with a lighted splint |
| oxygen $\left(\mathrm{O}_{2}\right)$ | relights a glowing splint |

[^0]
[^0]:    Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

    To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

    Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

