Cambridge International Examinations

IGCSE

Cambridge International General Certificate of Secondary Education

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Practical notes are provided on page 8.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
Total	

[^0]This document consists of 8 printed pages and 1 insert.

1 You are going to investigate the rate of reaction between hydrochloric acid and aqueous sodium thiosulfate. When these chemicals react they form a precipitate which makes the solution go cloudy. The formation of this precipitate can be used to show how fast the reaction proceeds.

Read all the instructions below carefully before starting the experiments.

Instructions

You are going to carry out five experiments using the apparatus shown below.

(a) Experiment 1

Use the large measuring cylinder to pour $50 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate into a conical flask. Place the conical flask on the printed insert provided.
Fill the small measuring cylinder with $10 \mathrm{~cm}^{3}$ of the hydrochloric acid provided.
Add the acid to the solution in the conical flask and immediately start your timer and swirl the mixture.
Measure the time taken for the printed text to disappear from view. Record the time in the table. Pour the solution away and rinse the conical flask with distilled water.
(b) Experiment 2

Use the large measuring cylinder to pour $40 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate into the conical flask, followed by $10 \mathrm{~cm}^{3}$ of distilled water. Place the conical flask on the printed insert.
Fill the small measuring cylinder with $10 \mathrm{~cm}^{3}$ of the hydrochloric acid provided.
Add the acid to the solution in the flask, start your timer and swirl the mixture.
Measure the time taken for the printed text to disappear from view. Record the time in the table.
(c) Experiment 3

Repeat Experiment 2 using $35 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate and $15 \mathrm{~cm}^{3}$ of distilled water. Record the time in the table.
(d) Experiment 4

Repeat Experiment 2 using $30 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate and $20 \mathrm{~cm}^{3}$ of distilled water. Record the time in the table.
(e) Experiment 5

Repeat Experiment 2 using $20 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate and $30 \mathrm{~cm}^{3}$ of distilled water. Record the time in the table.
(f) Complete the table.

Experiment	volume of aqueous sodium thiosulfate $/ \mathrm{cm}^{3}$	volume of distilled water $/ \mathrm{cm}^{3}$	time for printed text to disappear/s
1			
2			
3			
4			
5			

(g) Plot the results you have obtained on the grid and draw a smooth line graph.
time for printed text to disappear/s

(h) Describe the appearance of the solution in the conical flask at the end of each experiment.
(i) (i) From your graph, deduce the time for the printed text to disappear if the experiment was repeated using $25 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate and $25 \mathrm{~cm}^{3}$ of distilled water.
Show clearly on the grid how you worked out your answer.
\qquad
(ii) Sketch on the grid the curve you would expect if the experiments were repeated at a lower temperature. Label this curve.
(j) (i) In which experiment was the rate of reaction greatest?
\qquad
(ii) Explain why the rate of reaction was greatest in this experiment.
\qquad
\qquad
\qquad
(k) A student carried out a sixth experiment using $60 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate.

Why would this not be an appropriate volume to use in this series of experiments?
\qquad
\qquad
(I) Suggest and explain the effect of
(i) using a burette to measure the volume of the hydrochloric acid,
\qquad
\qquad
(ii) using a $100 \mathrm{~cm}^{3}$ conical flask.
\qquad
\qquad

2 You are provided with a mixture of two solids, \mathbf{J} and \mathbf{K}, which are both salts. \mathbf{J} is water soluble and K is insoluble.
Carry out the following tests on the mixture, recording all of your observations in the table. Conclusions must not be written in the table.

(f) What conclusions can you draw about solid J?
\qquad
\qquad
(g) What conclusions can you draw about solid K?
\qquad
\qquad
\qquad

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	add dilute acid	effervescence, carbon dioxide produced
chloride $\left(\mathrm{Cl} l^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide $\left(\mathrm{I}^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$ [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium $\left(\mathrm{Al}^{3+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	ammonia produced on warming	-
calcium $\left(\mathrm{Ca}^{2+}\right)$	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper $\left(\mathrm{Cu}^{2+}\right)$	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) $\left(\mathrm{Fe}^{2+}\right)$	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) $\left(\mathrm{Fe}^{3+}\right)$	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc $\left(\mathrm{Zn}^{2+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia $\left(\mathrm{NH}_{3}\right)$	turns damp red litmus paper blue
carbon dioxide $\left(\mathrm{CO}_{2}\right)$	turns limewater milky
chlorine $\left(\mathrm{Cl}_{2}\right)$	bleaches damp litmus paper
hydrogen $\left(\mathrm{H}_{2}\right)$	'pops' with a lighted splint
oxygen $\left(\mathrm{O}_{2}\right)$	relights a glowing splint

[^1]
[^0]: The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

[^1]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

 Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

