CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0625 PHYSICS

0625/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0625	31

NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

B marks are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers **must** be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks

are compensatory marks which can be scored even if the points to which they refer are
not written down by the candidate, provided subsequent working gives evidence that
they must have known it. For example, if an equation carries a C mark and the candidate
does not write down the actual equation but does correct working which shows he knew
the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.

Brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

c.a.o. means "correct answer only".

e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated "e.c.f."

e.e.o.o. means "each error or omission".

owtte means "or words to that effect".

<u>Underlining</u> indicates that this <u>must</u> be seen in the answer offered, or something very similar.

OR/or indicates alternative answers, any one of which is satisfactory for scoring the mark.

AND indicates that both answers are required to score the mark.

Spelling Be generous with spelling and use of English. However, do not allow ambiguities, e.g. spelling which suggests confusion between reflection/refraction/diffraction or thermistor/transistor/transformer.

Sig. figs. On this paper, answers are generally acceptable to any number of significant figures ≥ 2, except where the mark scheme specifies otherwise or gives an answer to only 1 significant figure.

Units Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: **maximum 1 per question**.

Fractions Fractions are only acceptable where specified.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0625	31
Extras	If a candidate gives more answers than required, irrelevant extras which contradict an otherwise correct response, or are forbidden by use right plus wrong = 0.		
Ignore	indicates that something which is not correct is disregarded and does not cause a right plus wrong penalty.		
NOT	indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate, i.e. right plus wrong penalty applies.		

P	age 4	4	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – May/June 2015	0625	31
1	(a)	(i)	acceleration OR increasing speed		C1
			constant acceleration OR constant rate of increase in speed		A1
		(ii)	decreasing acceleration OR decreasing rate of increase in speed NOT deceleration		B1
	(b)	me	ntion of air resistance AND weight (of object) / force due to gravity		B1
			celeration at start (of fall) is acceleration of gravity / 10 m/s ² / a maximacceleration decreases (as it falls)	mum / <i>g</i>	B1
		air	resistance increases as speed increases/as it accelerates		B1
			celeration zero/terminal velocity/constant speed/maximum speed wh resistance = weight	en	B1
					[Total: 7]
2	(a)	(i)	$(P =) F \div A \text{ OR } 3.5 \times 10^4 \div 0.25$ = 1.4 × 10 ⁵ Pa ecf (i)		C1 A1
		(ii)	$(1.4 \times 10^5 - 1.0 \times 10^5 =) 4(.0) \times 10^4 Pa \text{ ecf (ii)}$		B1
		(iii)	$P = h \rho g$ in any form OR ($h = P + \rho g$ OR $4.0 \times 10^4 + (1020 \times 10)$ = 3.9 m OR 4 m		C1 A1
	(b)	any	v 2 from:		max. B2
	. ,	-	weight of block upward force of water (on block) / upthrust (of water on block)		
		•	weight of cable		
	(c)	(tei	nsion force) becomes smaller or zero		B1
					[Total: 8]
3	(a)	W:	= mg in any form OR (m =) $W \div g$ OR $80000 \div 10$		C1
	()		00 kg		A1
	(b)		$m \div V$ in any form OR $(V =) m \div \rho$ OR $8000 \div 1000$.0 m ³ ecf (a)		C1 A1
		- 0	.UIII ECI (a)		AI
	(c)	_	h OR weight $\times h$ OR $8000 \times 10 \times 4$ 20000 J OR 320 kJ ecf (a)		C1 A1
		-	V-7		

		Cambridge IGCSE – May/June 2015	0625	31
(d)	•	iciency =) output (energy) ÷ input (energy) (× 100) 96 ÷ 320 (× 100)		C1
	= 0	.30 OR 30% ecf (c)		A1
				[Total: 8]
4 (a)	(i)	 any 2 from: liquid molecules not in fixed positions / can move about / move each other OR solid molecules have a fixed position liquid molecules have random arrangement OR solid molecule arranged regularly / in patterns / layers / lattice liquid molecules are (slightly) further apart (than solid molecule reverse argument 	es	max. B2
	(ii)	energy / work / thermal energy / (latent) heat required AND to break bonds (between molecules) / to overcome attractive forces (between the molecules) / to increase the <u>potential</u> energy of the m		В1
(b)	(i)	$E = ml$ in any form OR ml OR 1.65×330000 = 540000 J OR 544500 J		C1 A1
	(ii)	chemical (energy in body) converted to thermal / internal (energy)		B1
				[Total: 6]
5 (a)	ene •	ergy/heat required to increase temperature of 1 kg / 1 g / unit mass (of the substance) by 1 °C / 1 K / unit temperature		B1 B1
(b)	$E = \Delta \theta$	$mc\Delta\theta$ in any form OR $(c =) E \div m\Delta\theta$ Pt in any form OR 420 × 95 (= 39900) = [40.5 – 19.5] OR 21 = 39900÷42 =) 950 J/(kg °C)		C1 C1 C1 A1
(c)	any •	two separate points from: lagging / insulation (around block) OR insulate (the block)		max. B2
	•	raise temperature of block by a smaller amount OR heat for a short OR use lower power heater for same time OR higher power for same temperature rise / shorter time polish the surface of the block OR wrap the block in shiny material (shiny) white reduce initial temperature of block (to below room temperature) OR temperature of room reduce draughts	<u>ne</u> OR paint	

Mark Scheme

Syllabus

Paper

[Total: 8]

	age (Cambridge IGCSE – May/June 2015	0625	31
6	(a)	(i)	any value between 6 and 7 mm seen		C1
			$26 \pm 2 \text{mm} \text{OR} 2.6 \pm 0.2 \text{cm}$		A1
		(ii)	$v = f \lambda$ in any form OR $(f =) v \div \lambda$ OR $0.39 \div 0.026$ = 15 Hz ecf (i)		C1 A1
	(b)		east 4 wavefronts showing refraction in correct direction arallel wavefront lines continuous with those in fast region		B1 B1
	(c)	unc	changed / nothing		B1
					[Total: 7]
7	(a)	(i)	all three of: • virtual, • upright / erect / same way up, • magnified / large(r) (than object) award 1 mark for one or two correct description(s) which are not correct	ntradicted	max. B2
		(ii)	RS		B1
		(iii)	eye placed to right of lens		B1
	(b)	any	 two correct rays from: ray parallel to axis refracted through F ray passing through centre of lens undeflected ray through added focus to left of lens refracted parallel to axis 		max. B2
		ima	ge from intersection of rays clearly shown as inverted		B1
		and	orrect rays drawn on Fig. 7.2, from tip of O to intersection of other two I refracted correctly at lens e: the third ray does not have to be one of those listed above	rays	B1
					[Total: 8]
8	(a)	(i)	(magnetic) field (lines) of magnet cut by turns / coil / wire OR (magnetic) field linked with coil changes		B1
		(ii)	1 (needle of meter) deflects to the left (and returns to zero)		B1
			2 (needle of meter) deflects to right and left (alternately) OR to and fro		B1

Mark Scheme

Syllabus

Paper

Pa	age 7	7	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – May/June 2015	0625	31
	(b)	(i)	$N_p/N_s = V_p/V_s$ in any form OR $(N_s =) N_p V_s/V_p$ OR $8000 \times 6/240$ OR $(V_p/V_s =) 40$ $(N_s =) 200$		C1 A1
		(ii)	1 $(P = IV = 0.050 \times 240 =) 12W$		B1
			2 0.9 × 12 OR 10.8 OR $I_sV_s = 0.9 I_pV_p$ OR $I_s = 0.9 I_pV_p/V_s$ OR 0.9 × 0.05 × 240/6		C1
			$(I_s =) 1.8 \mathrm{A} \mathrm{ecf} 1.$		A1
					[Total: 8]
9	(a)	(i)	$1/R = 1/R_1 + 1/R_2$ OR $R = R_1R_2/(R_1 + R_2)$ OR with numbers $(R =) 500 \Omega$		C1 A1
		(ii)	$I = (12 \div 1000) = 0.012 \text{A ecf}$ (i)		B1
	((iii)	$(V =) IR OR 0.012 \times 500 OR 12 \times 500 \div 1000$ = 6.0 V ecf (i)(ii)		C1 A1
	(b)	(mo	ore current in circuit so) current (in 500Ω resistor) increases		B1
			stance of parallel combination decreases total resistance (of circuit) decreases		B1
					[Total: 7]
10	(a)	(i)	at least three horizontal, parallel lines evenly spaced (ignore edge	effects)	B1
			arrows pointing left to right		B1
	(b)		at hand half of ball has more + signs than – signs		N44
			D left hand half of ball has more – signs than + signs		M1
		equ	al numbers of + and – signs		A1
	(c)	Q = 5.6	$= I t \text{ in any form OR } (I =) Q \div t \text{ OR } 2.8 \times 10^{-8} \div 0.05 \times 10^{-7} \text{ A OR C/s}$		C1 A1
					[Total: 6]
11	(a)		ctromagnetic (waves / radiation / rays / spectrum) (high energy) photons		B1

age 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0625	31
(b)	lpha and eta deflected in opposite directions		B1
	 any 1 from: β deflected more (than α) deflections perpendicular to field direction and to paths of particle paths (of particles) are curves / circular / arcs 		B1
(c)	curved path		B1
	(deflected/attracted) towards positively charged plate OR in opposite direction to field		B1
(d)	(i) α-particle OR helium <u>nucleus</u> OR 2 protons + 2 neutrons		B1
((ii) A = 210 Z = 84		B1
			[Total: 7]